Advertisement
Review Article|Articles in Press

Emerging Field of Biased Opioid Agonists

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribers receive full online access to your subscription and archive of back issues up to and including 2002.

      Content published before 2002 is available via pay-per-view purchase only.

      Subscribe:

      Subscribe to Anesthesiology Clinics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Bruchas M.R.
        • Roth B.L.
        New technologies for elucidating opioid receptor function.
        Trends Pharmacol Sci. 2016; 37: 279-289
        • DeWeerdt S.
        Tracing the US opioid crisis to its roots.
        Nature. 2019; 573: S10-S12
        • Michel M.C.
        • Charlton S.J.
        Biased agonism in drug discovery-is it too soon to choose a path?.
        Mol Pharmacol. 2018; 93: 259-265
        • Smith J.S.
        • Lefkowitz R.J.
        • Rajagopal S.
        Biased signaling: from simple switches to allosteric microprocessors.
        Nat Rev Drug Discov. 2018; 17: 243-260
        • Wingler L.M.
        • Lefkowitz R.J.
        Conformational basis of g protein-coupled receptor signaling versatility.
        Trends Cell Biol. 2020; 30: 736-747
        • Kenakin T.
        Biased receptor signaling in drug discovery.
        Pharmacol Rev. 2019; 71: 267-315
        • Onfroy L.
        • Galandrin S.
        • Pontier S.M.
        • et al.
        G protein stoichiometry dictates biased agonism through distinct receptor-G protein partitioning.
        Sci Rep. 2017; 7: 7885
        • Goodman L.S.
        • Gilman A.
        The pharmacological basis of therapeutics: a textbook of pharmacology, toxicology, and therapeutics for physicians and medical students.
        1st ed. Macmillan Publishing, New York1941
        • Pert C.B.
        • Snyder S.H.
        Opiate receptor: demonstration in nervous tissue.
        Science. 1973; 179: 1011-1014
        • Gillis A.
        • Kliewer A.
        • Kelly E.
        • et al.
        Critical assessment of g protein-biased agonism at the μ-opioid receptor.
        Trends Pharmacol Sci. 2020; 41: 947-959
        • Siuda E.R.
        • Carr R.
        • Rominger D.H.
        • et al.
        Biased mu-opioid receptor ligands: a promising new generation of pain therapeutics.
        Curr Opin Pharmacol. 2017; 32: 77-84
        • Che T.
        • Dwivedi-Agnihotri H.
        • Shukla A.K.
        • et al.
        Biased ligands at opioid receptors: Current status and future directions.
        Sci Signal. 2021; 14: eaav0320
        • Porter-Stransky K.A.
        • Weinshenker D.
        Arresting the development of addiction: the role of β -arrestin 2 in drug abuse.
        J Pharmacol Exp Ther. 2017; 361: 341-348
        • Bohn L.M.
        • Lefkowitz R.J.
        • Gainetdinov R.R.
        • et al.
        Enhanced morphine analgesia in mice lacking beta-arrestin 2.
        Science. 1999; 286: 2495-2498
        • Bohn L.M.
        • Gainetdinov R.R.
        • Lin F.T.
        • et al.
        Mu-opioid receptor desensitization by beta-arrestin-2 determines morphine tolerance but not dependence.
        Nature. 2000; 408: 720-723
        • Raehal K.M.
        • Walker J.K.L.
        • Bohn L.M.
        Morphine side effects in beta-arrestin 2 knockout mice.
        J Pharmacol Exp Ther. 2005; 314: 1195-1201
        • Matthes H.W.
        • Smadja C.
        • Valverde O.
        • et al.
        Activity of the delta-opioid receptor is partially reduced, whereas activity of the kappa-receptor is maintained in mice lacking the mu-receptor.
        J Neurosci. 1998; 18: 7285-7295
        • Montandon G.
        • Slutsky A.S.
        Solving the opioid crisis: respiratory depression by opioids as critical end point.
        Chest. 2019; 156: 653-658
        • Varga A.G.
        • Reid B.T.
        • Kieffer B.L.
        • et al.
        Differential impact of two critical respiratory centres in opioid-induced respiratory depression in awake mice.
        J Physiol. 2020; 598: 189-205
        • Bachmutsky I.
        • Wei X.P.
        • Kish E.
        • et al.
        Opioids depress breathing through two small brainstem sites.
        Elife. 2020; 9: e52694
        • Levitt E.S.
        • Abdala A.P.
        • Paton J.F.R.
        • et al.
        Μ opioid receptor activation hyperpolarizes respiratory-controlling kölliker-fuse neurons and suppresses post-inspiratory drive.
        J Physiol. 2015; 593: 4453-4469
        • Kliewer A.
        • Gillis A.
        • Hill R.
        • et al.
        Morphine-induced respiratory depression is independent of β-arrestin2 signalling.
        Br J Pharmacol. 2020; 177: 2923-2931
        • Tan H.S.
        • Habib A.S.
        Oliceridine: a novel drug for the management of moderate to severe acute pain - a review of current evidence.
        J Pain Res. 2021; 14: 969-979
        • Chen X.T.
        • Pitis P.
        • Liu G.
        • et al.
        Structure-activity relationships and discovery of a G protein biased μ opioid receptor ligand, [(3-methoxythiophen-2-yl)methyl]({2-[(9R)-9-(pyridin-2-yl)-6-oxaspiro-[4.5]decan-9-yl]ethyl})amine (Trv130), for the treatment of acute severe pain.
        J Med Chem. 2013; 56: 8019-8031
      1. Commissioner, O. FDA Approves New Opioid for Intravenous Use in Hospitals, Other Controlled Clinical Settings.
        (Available at:) (Accessed 1 October 2022)
        • Pedersen M.F.
        • Wróbel T.M.
        • Märcher-Rørsted E.
        • et al.
        Biased agonism of clinically approved μ-opioid receptor agonists and TRV130 is not controlled by binding and signaling kinetics.
        Neuropharmacology. 2020; 166: 107718
        • Liang D.Y.
        • Li W.W.
        • Nwaneshiudu C.
        • et al.
        Pharmacological characters of oliceridine, a μ-opioid receptor g-protein–biased ligand in mice.
        Anesth Analg. 2019; 129: 1414-1421
        • Altarifi A.A.
        • David B.
        • Muchhala K.H.
        • et al.
        Effects of acute and repeated treatment with the biased mu opioid receptor agonist TRV130 (Oliceridine) on measures of antinociception, gastrointestinal function, and abuse liability in rodents.
        J Psychopharmacol. 2017; 31: 730-739
        • Viscusi E.R.
        • Skobieranda F.
        • Soergel D.G.
        • et al.
        APOLLO-1: a randomized placebo and active-controlled phase III study investigating oliceridine (Trv130), a G protein-biased ligand at the μ-opioid receptor, for management of moderate-to-severe acute pain following bunionectomy.
        J Pain Res. 2019; 12: 927-943
        • Singla N.K.
        • Skobieranda F.
        • Soergel D.G.
        • et al.
        Apollo-2: a randomized, placebo and active-controlled phase iii study investigating oliceridine (Trv130), a g protein-biased ligand at the μ-opioid receptor, for management of moderate to severe acute pain following abdominoplasty.
        Pain Pract. 2019; 19: 715-731
        • Singla N.
        • Minkowitz H.S.
        • Soergel D.G.
        • et al.
        A randomized, Phase IIb study investigating oliceridine (Trv130), a novel μ-receptor G-protein pathway selective (Μ-gps) modulator, for the management of moderate to severe acute pain following abdominoplasty.
        J Pain Res. 2017; 10: 2413-2424
        • Gillis A.
        • Gondin A.B.
        • Kliewer A.
        • et al.
        Low intrinsic efficacy for G protein activation can explain the improved side effect profiles of new opioid agonists.
        Sci Signal. 2020; 13: eaaz3140
        • Aiyer R.
        • Gulati A.
        • Gungor S.
        • et al.
        Treatment of chronic pain with various buprenorphine formulations: a systematic review of clinical studies.
        Anesth Analg. 2018; 127: 529-538
        • Gudin J.
        • Fudin J.
        A narrative pharmacological review of buprenorphine: a unique opioid for the treatment of chronic pain.
        Pain Ther. 2020; 9: 41-54
      2. Olinvyk [package insert]. Trevena Inc, Chesterbrook, PA2020
        • Li A.H.
        • Schmiesing C.
        • Aggarwal A.K.
        Evidence for continuing buprenorphine in the perioperative period.
        Clin J Pain. 2020; 36: 764-774
        • DeWire S.M.
        • Yamashita D.S.
        • Rominger D.H.
        • et al.
        A G protein-biased ligand at the μ-opioid receptor is potently analgesic with reduced gastrointestinal and respiratory dysfunction compared with morphine.
        J Pharmacol Exp Ther. 2013; 344: 708-717
        • Nickolls S.A.
        • Waterfield A.
        • Williams R.E.
        • et al.
        Understanding the effect of different assay formats on agonist parameters: a study using the μ-opioid receptor.
        J Biomol Screen. 2011; 16: 706-716
        • Kelly E.
        Efficacy and ligand bias at the μ-opioid receptor.
        Br J Pharmacol. 2013; 169: 1430-1446
        • Vasudevan L.
        • Vandeputte M.
        • Deventer M.
        • et al.
        Assessment of structure-activity relationships and biased agonism at the Mu opioid receptor of novel synthetic opioids using a novel, stable bio-assay platform.
        Biochem Pharmacol. 2020; 177: 113910
        • Zebala J.A.
        • Schuler A.D.
        • Kahn S.J.
        • et al.
        Desmetramadol is identified as a g-protein biased μ opioid receptor agonist.
        Front Pharmacol. 2019; 10: 1680
        • Miotto K.
        • Cho A.K.
        • Khalil M.A.
        • et al.
        Trends in tramadol: pharmacology, metabolism, and misuse.
        Anesth Analg. 2017; 124: 44-51
        • Bohn L.M.
        • Gainetdinov R.R.
        • Sotnikova T.D.
        • et al.
        Enhanced rewarding properties of morphine, but not cocaine, in beta(Arrestin)-2 knock-out mice.
        J Neurosci. 2003; 23: 10265-10273
        • Negus S.S.
        • Freeman K.B.
        Abuse potential of biased mu opioid receptor agonists.
        Trends Pharmacol Sci. 2018; 39: 916-919
        • Faouzi A.
        • Varga B.R.
        • Majumdar S.
        Biased opioid ligands.
        Molecules. 2020; 25: 4257
        • James I.E.
        • Skobieranda F.
        • Soergel D.G.
        • et al.
        A first-in-human clinical study with trv734, an orally bioavailable g-protein-biased ligand at the μ-opioid receptor.
        Clin Pharmacol Drug Dev. 2020; 9: 256-266
        • Kruegel A.C.
        • Gassaway M.M.
        • Kapoor A.
        • et al.
        Synthetic and receptor signaling explorations of the mitragyna alkaloids: mitragynine as an atypical molecular framework for opioid receptor modulators.
        J Am Chem Soc. 2016; 138: 6754-6764
        • Kelly E.
        • Conibear A.
        • Henderson G.
        Biased agonism: lessons from studies of opioid receptor agonists.
        Annu Rev Pharmacol Toxicol. 2023; 63: 491-515
        • Yudin Y.
        • Rohacs T.
        The G-protein-biased agents PZM21 and TRV130 are partial agonists of μ-opioid receptor-mediated signalling to ion channels.
        Br J Pharmacol. 2019; 176: 3110-3125
        • Kudla L.
        • Bugno R.
        • Skupio U.
        • et al.
        Functional characterization of a novel opioid, PZM21, and its effects on the behavioural responses to morphine.
        Br J Pharmacol. 2019; 176: 4434-4445
        • Litman R.S.
        • Pagán O.H.
        • Cicero T.J.
        Abuse-deterrent opioid formulations.
        Anesthesiology. 2018; 128: 1015-1026
        • Van Zee A.
        The promotion and marketing of oxycontin: commercial triumph, public health tragedy.
        Am J Public Health. 2009; 99: 221-227
        • Miyazaki T.
        • Choi I.Y.
        • Rubas W.
        • et al.
        Nktr-181: a novel mu-opioid analgesic with inherently low abuse potential.
        J Pharmacol Exp Ther. 2017; 363: 104-113
        • Ding H.
        • Czoty P.W.
        • Kiguchi N.
        • et al.
        A novel orvinol analog, BU08028, as a safe opioid analgesic without abuse liability in primates.
        Proc Natl Acad Sci U S A. 2016; 113: E5511-E5518
        • Pasternak G.W.
        Mu opioid pharmacology: 40 years to the promised land.
        Adv Pharmacol. 2018; 82: 261-291
        • Servick K.
        Safety benefits of ‘biased’ opioids scrutinized.
        Science. 2020; 367: 966