Advertisement
Review Article| Volume 41, ISSUE 1, P39-78, March 2023

Traumatic Brain Injury

Intraoperative Management and Intensive Care Unit Multimodality Monitoring

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribers receive full online access to your subscription and archive of back issues up to and including 2002.

      Content published before 2002 is available via pay-per-view purchase only.

      Subscribe:

      Subscribe to Anesthesiology Clinics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Rubiano A.M.
        • Carney N.
        • Chesnut R.
        • et al.
        Global neurotrauma research challenges and opportunities.
        Nature. 2015; 527: S193-S197
        • McCunn M.
        • Dutton R.P.
        • Dagal A.
        • et al.
        Trauma, critical care, and emergency care anesthesiology: a new paradigm for the “acute care” anesthesiologist?.
        Anesth Analg. 2015; 121: 1668-1673
        • Dewan M.C.
        • Rattani A.
        • Gupta S.
        • et al.
        Estimating the global incidence of traumatic brain injury.
        J Neurosurg. 2018; 130: 1080-1097
      1. Get the Facts About TBI | Concussion | Traumatic Brain Injury | CDC Injury Center.
        (Available at:) (Published March 21, 2022. Accessed August 19, 2022)
        • Menon D.K.
        • Schwab K.
        • Wright D.W.
        • et al.
        Demographics and clinical assessment working group of the international and interagency initiative toward common data elements for research on traumatic brain injury and psychological health. position statement: definition of traumatic brain injury.
        Arch Phys Med Rehabil. 2010; 91: 1637-1640
        • Maas A.I.R.
        • Menon D.K.
        • Adelson P.D.
        • et al.
        Traumatic brain injury: integrated approaches to improve prevention, clinical care, and research.
        Lancet Neurol. 2017; 16: 987-1048
        • Brazinova A.
        • Rehorcikova V.
        • Taylor M.S.
        • et al.
        Epidemiology of traumatic brain injury in europe: a living systematic review.
        J Neurotrauma. 2021; 38: 1411-1440
        • Kong L.Z.
        • Zhang R.L.
        • Hu S.H.
        • et al.
        Military traumatic brain injury: a challenge straddling neurology and psychiatry.
        Mil Med Res. 2022; 9: 2
        • Saatman K.E.
        • Duhaime A.C.
        • Bullock R.
        • et al.
        Classification of Traumatic Brain Injury for Targeted Therapies.
        J Neurotrauma. 2008; 25: 719-738
        • Marshall L.F.
        • Marshall S.B.
        • Klauber M.R.
        • et al.
        The diagnosis of head injury requires a classification based on computed axial tomography.
        J Neurotrauma. 1992; 9: S287-S292
        • Teasdale G.
        • Jennett B.
        Assessment of coma and impaired consciousness. A practical scale.
        Lancet Lond Engl. 1974; 2: 81-84
        • Marmarou A.
        • Lu J.
        • Butcher I.
        • et al.
        Prognostic value of the glasgow coma scale and pupil reactivity in traumatic brain injury assessed pre-hospital and on enrollment: an impact analysis.
        J Neurotrauma. 2007; 24: 270-280
        • Fischer M.
        • Rüegg S.
        • Czaplinski A.
        • et al.
        Inter-rater reliability of the full outline of unresponsiveness score and the glasgow coma scale in critically ill patients: a prospective observational study.
        Crit Care Lond Engl. 2010; 14: R64
        • Teasdale G.
        • Maas A.
        • Lecky F.
        • et al.
        The glasgow coma scale at 40 years: standing the test of time.
        Lancet Neurol. 2014; 13: 844-854
        • Kaur P.
        • Sharma S.
        Recent advances in pathophysiology of traumatic brain injury.
        Curr Neuropharmacol. 2018; 16: 1224-1238
        • Maegele M.
        • Schöchl H.
        • Menovsky T.
        • et al.
        Coagulopathy and haemorrhagic progression in traumatic brain injury: advances in mechanisms, diagnosis, and management.
        Lancet Neurol. 2017; 16: 630-647https://doi.org/10.1016/S1474-4422(17)30197-7
        • Wada T.
        • Shiraishi A.
        • Gando S.
        • et al.
        Pathophysiology of coagulopathy induced by traumatic brain injury is identical to that of disseminated intravascular coagulation with hyperfibrinolysis.
        Front Med. 2021; 8 (Available at:) (Accessed August 20, 2022)
        • Thomas I.
        • Dickens A.M.
        • Posti J.P.
        • et al.
        Serum metabolome associated with severity of acute traumatic brain injury.
        Nat Commun. 2022; 13: 2545https://doi.org/10.1038/s41467-022-30227-5
        • Pugh M.J.
        • Kennedy E.
        • Prager E.M.
        • et al.
        Phenotyping the Spectrum of Traumatic Brain Injury: A Review and Pathway to Standardization.
        J Neurotrauma. 2021; 38: 3222-3234
        • Wilson M.H.
        • Ashworth E.
        • Hutchinson P.J.
        • British Neurotrauma Group
        A proposed novel traumatic brain injury classification system - an overview and inter-rater reliability validation on behalf of the Society of British Neurological Surgeons.
        Br J Neurosurg. 2022; 36: 633-638
        • Smith L.G.F.
        • Milliron E.
        • Ho M.L.
        • et al.
        Advanced neuroimaging in traumatic brain injury: an overview.
        Neurosurg Focus. 2019; 47: E17
        • Carney N.
        • Totten A.M.
        • O’Reilly C.
        • et al.
        Guidelines for the management of severe traumatic brain injury.
        Neurosurgery. 2017; 80 (Fourth Edition): 6-15
        • American College of Surgeons, Committee on Trauma
        Advanced trauma life support: student course manual.
        10th. American College of Surgeons, Chicago, IL2018
        • Garvin R.
        • Mangat H.S.
        Emergency neurological life support: severe traumatic brain injury.
        Neurocrit Care. 2017; 27: 159-169
        • McHugh G.S.
        • Engel D.C.
        • Butcher I.
        • et al.
        Prognostic value of secondary insults in traumatic brain injury: results from the IMPACT study.
        J Neurotrauma. 2007; 24: 287-293
        • Brenner M.
        • Stein D.M.
        • Hu P.F.
        • et al.
        Traditional systolic blood pressure targets underestimate hypotension-induced secondary brain injury.
        J Trauma Acute Care Surg. 2012; 72: 1135-1139
        • Sharrock M.F.
        • Rosenblatt K.
        Acute airway management and ventilation in the neurocritical care unit.
        in: Nelson S.E. Nyquist P.A. Neurointensive care unit: clinical practice and organization. Springer International Publishing, Cham, Switzerland2020: 31-47
        • Bronchard R.
        • Albaladejo P.
        • Brezac G.
        • et al.
        Early onset pneumonia: risk factors and consequences in head trauma patients.
        Anesthesiology. 2004; 100: 234-239
        • Fujii T.
        • Faul M.
        • Sasser S.
        Risk factors for cervical spine injury among patients with traumatic brain injury.
        J Emerg Trauma Shock. 2013; 6: 252-258
        • Grant AL Ranger A.
        • Young G.B.
        • Yazdani A.
        Incidence of major and minor brain injuries in facial fractures.
        J Craniofac Surg. 2012; 23: 1324-1328
        • Brown C.A.
        • Bair A.E.
        • Pallin D.J.
        • et al.
        Improved glottic exposure with the video macintosh laryngoscope in adult emergency department tracheal intubations.
        Ann Emerg Med. 2010; 56: 83-88
        • Ziaka M.
        • Exadaktylos A.
        Brain–lung interactions and mechanical ventilation in patients with isolated brain injury.
        Crit Care. 2021; 25: 358
        • Brian J.E.
        Carbon dioxide and the cerebral circulation.
        Anesthesiology. 1998; 88: 1365-1386
        • Buxton R.B.
        The thermodynamics of thinking: connections between neural activity, energy metabolism and blood flow.
        Philos Trans R Soc B Biol Sci. 2021; 376: 20190624
        • Yoon S.
        • Zuccarello M.
        • Rapoport R.M.
        pCO2 and pH regulation of cerebral blood flow.
        Front Physiol. 2012; 3: 365
        • Hoiland R.L.
        • Bain A.R.
        • Rieger M.G.
        • et al.
        Hypoxemia, oxygen content, and the regulation of cerebral blood flow.
        Am J Physiol Regul Integr Comp Physiol. 2016; 310: R398-R413
        • Launey Y.
        • Fryer T.D.
        • Hong Y.T.
        • et al.
        Spatial and temporal pattern of ischemia and abnormal vascular function following traumatic brain injury.
        JAMA Neurol. 2020; 77: 339-349
        • Nunn J.F.
        • Hill D.W.
        Respiratory dead space and arterial to end-tidal carbon dioxide tension difference in anesthetized man.
        J Appl Physiol. 1960; 15: 383-389
        • Lee S.W.
        • Hong Y.S.
        • Han C.
        • et al.
        Concordance of end-tidal carbon dioxide and arterial carbon dioxide in severe traumatic brain injury.
        J Trauma. 2009; 67: 526-530
        • Gouvea Bogossian E.
        • Peluso L.
        • Creteur J.
        • et al.
        Hyperventilation in Adult TBI Patients: How to Approach It?.
        Front Neurol. 2021; 11 (Available at:) (Accessed August 22, 2022)
        • Curley G.
        • Kavanagh B.P.
        • Laffey J.G.
        Hypocapnia and the injured brain: more harm than benefit.
        Crit Care Med. 2010; 38: 1348-1359
        • Laffey J.G.
        • Kavanagh B.P.
        Hypocapnia.
        N Engl J Med. 2002; 347: 43-53
        • Marion D.W.
        • Puccio A.
        • Wisniewski S.R.
        • et al.
        Effect of hyperventilation on extracellular concentrations of glutamate, lactate, pyruvate, and local cerebral blood flow in patients with severe traumatic brain injury.
        Crit Care Med. 2002; 30: 2619-2625
        • Lee J.H.
        • Kelly D.F.
        • Oertel M.
        • et al.
        Carbon dioxide reactivity, pressure autoregulation, and metabolic suppression reactivity after head injury: a transcranial Doppler study.
        J Neurosurg. 2001; 95: 222-232
        • Picetti E.
        • Pelosi P.
        • Taccone F.S.
        • et al.
        VENTILatOry strategies in patients with severe traumatic brain injury: the VENTILO survey of the european society of intensive care medicine (ESICM).
        Crit Care. 2020; 24: 158
        • Walkey A.J.
        • Goligher E.C.
        • Del Sorbo L.
        • et al.
        Low tidal volume versus non-volume-limited strategies for patients with acute respiratory distress syndrome. a systematic review and meta-analysis.
        Ann Am Thorac Soc. 2017; 14: S271-S279
        • Caricato A.
        • Conti G.
        • Della Corte F.
        • et al.
        Effects of PEEP on the intracranial system of patients with head injury and subarachnoid hemorrhage: the role of respiratory system compliance.
        J Trauma. 2005; 58: 571-576
        • Robba C.
        • Bragazzi N.L.
        • Bertuccio A.
        • et al.
        Effects of prone position and positive end-expiratory pressure on noninvasive estimators of ICP: a pilot study.
        J Neurosurg Anesthesiol. 2017; 29: 243-250
        • Muench E.
        • Bauhuf C.
        • Roth H.
        • et al.
        Effects of positive end-expiratory pressure on regional cerebral blood flow, intracranial pressure, and brain tissue oxygenation.
        Crit Care Med. 2005; 33: 2367-2372
        • Robba C.
        • Poole D.
        • McNett M.
        • et al.
        Mechanical ventilation in patients with acute brain injury: recommendations of the European Society of Intensive Care Medicine consensus.
        Intensive Care Med. 2020; 46: 2397-2410
        • El-Menyar A.
        • Goyal A.
        • Latifi R.
        • et al.
        Brain-heart interactions in traumatic brain injury.
        Cardiol Rev. 2017; 25: 279-288
        • Meyfroidt G.
        • Baguley I.J.
        • Menon D.K.
        Paroxysmal sympathetic hyperactivity: the storm after acute brain injury.
        Lancet Neurol. 2017; 16: 721-729
        • Krishnamoorthy V.
        • Sharma D.
        • Prathep S.
        • et al.
        Myocardial dysfunction in acute traumatic brain injury relieved by surgical decompression.
        Case Rep Anesthesiol. 2013; 2013: e482596
        • Piliponis L.
        • Neverauskaitė-Piliponienė G.
        • Kazlauskaitė M.
        • et al.
        Neurogenic stress cardiomyopathy following aneurysmal subarachnoid haemorrhage: a literature review.
        Semin Cardiovasc Med. 2018; 25: 44-52
        • Ancona F.
        • Bertoldi L.F.
        • Ruggieri F.
        • et al.
        Takotsubo cardiomyopathy and neurogenic stunned myocardium: similar albeit different.
        Eur Heart J. 2016; 37: 2830-2832
        • Kenigsberg B.B.
        • Barnett C.F.
        • Mai J.C.
        • et al.
        Neurogenic stunned myocardium in severe neurological injury.
        Curr Neurol Neurosci Rep. 2019; 19: 90
        • Blanco P.
        • Volpicelli G.
        Common pitfalls in point-of-care ultrasound: a practical guide for emergency and critical care physicians.
        Crit Ultrasound J. 2016; 8: 15
        • Li L.
        • Yong R.J.
        • Kaye A.D.
        • et al.
        Perioperative point of care ultrasound (POCUS) for anesthesiologists: an overview.
        Curr Pain Headache Rep. 2020; 24: 20
        • Gunst M.
        • Ghaemmaghami V.
        • Sperry J.
        • et al.
        Accuracy of cardiac function and volume status estimates using the bedside echocardiographic assessment in trauma/critical care.
        J Trauma. 2008; 65: 509-516
        • Bouma G.J.
        • Muizelaar J.P.
        • Bandoh K.
        • et al.
        Blood pressure and intracranial pressure-volume dynamics in severe head injury: relationship with cerebral blood flow.
        J Neurosurg. 1992; 77: 15-19
        • Rangel-Castilla L.
        • Gasco J.
        • Nauta H.J.W.
        • et al.
        Cerebral pressure autoregulation in traumatic brain injury.
        Neurosurg Focus. 2008; 25: E7
        • Berry C.
        • Ley E.J.
        • Bukur M.
        • et al.
        Redefining hypotension in traumatic brain injury.
        Injury. 2012; 43: 1833-1837
        • Murray G.D.
        • Butcher I.
        • McHugh G.S.
        • et al.
        Multivariable prognostic analysis in traumatic brain injury: results from the IMPACT study.
        J Neurotrauma. 2007; 24: 329-337
        • Chesnut R.M.
        • Marshall L.F.
        • Klauber M.R.
        • et al.
        The role of secondary brain injury in determining outcome from severe head injury.
        J Trauma. 1993; 34: 216-222
        • Salim A.
        • Hadjizacharia P.
        • DuBose J.
        • et al.
        Role of anemia in traumatic brain injury.
        J Am Coll Surg. 2008; 207: 398-406
        • Van Beek J.G.M.
        • Mushkudiani N.A.
        • Steyerberg E.W.
        • et al.
        Prognostic value of admission laboratory parameters in traumatic brain injury: results from the IMPACT Study.
        J Neurotrauma. 2007; 24: 315-328
        • Mirski M.A.
        • Frank S.M.
        • Kor D.J.
        • et al.
        Restrictive and liberal red cell transfusion strategies in adult patients: reconciling clinical data with best practice.
        Crit Care Lond Engl. 2015; 19: 202
        • Retter A.
        • Wyncoll D.
        • Pearse R.
        • et al.
        Guidelines on the management of anaemia and red cell transfusion in adult critically ill patients.
        Br J Haematol. 2013; 160: 445-464
        • Napolitano L.M.
        • Kurek S.
        • Luchette F.A.
        • et al.
        Clinical practice guideline: red blood cell transfusion in adult trauma and critical care.
        Crit Care Med. 2009; 37: 3124-3157
        • American Society of Anesthesiologists Task Force on Perioperative Blood Management
        Practice guidelines for perioperative blood management: an updated report by the American Society of Anesthesiologists Task Force on Perioperative Blood Management.
        Anesthesiology. 2015; 122: 241-275
        • Robertson C.S.
        • Hannay H.J.
        • Yamal J.M.
        • et al.
        Effect of erythropoietin and transfusion threshold on neurological recovery after traumatic brain injury: a randomized clinical trial.
        JAMA. 2014; 312: 36-47
        • CRASH-3 trial collaborators
        Effects of tranexamic acid on death, disability, vascular occlusive events and other morbidities in patients with acute traumatic brain injury (CRASH-3): a randomised, placebo-controlled trial.
        Lancet Lond Engl. 2019; 394: 1713-1723
        • Richards J.E.
        • Harris T.
        • Dünser M.W.
        • et al.
        Vasopressors in Trauma: A Never Event?.
        Anesth Analg. 2021; 133: 68-79
        • Lambden S.
        • Creagh-Brown B.C.
        • Hunt J.
        • et al.
        Definitions and pathophysiology of vasoplegic shock.
        Crit Care. 2018; 22: 174
        • Sperry J.L.
        • Minei J.P.
        • Frankel H.L.
        • et al.
        Early use of vasopressors after injury: caution before constriction.
        J Trauma. 2008; 64: 9-14
        • Spahn D.R.
        • Bouillon B.
        • Cerny V.
        • et al.
        The European guideline on management of major bleeding and coagulopathy following trauma: fifth edition.
        Crit Care. 2019; 23: 98
        • Guimarães S.
        • Moura D.
        Vascular adrenoceptors: an update.
        Pharmacol Rev. 2001; 53: 319-356
        • Froese L.
        • Dian J.
        • Gomez A.
        • et al.
        Cerebrovascular response to phenylephrine in traumatic brain injury: a scoping systematic review of the human and animal literature.
        Neurotrauma Rep. 2020; 1: 46-62
        • Steiner L.A.
        • Johnston A.J.
        • Czosnyka M.
        • et al.
        Direct comparison of cerebrovascular effects of norepinephrine and dopamine in head-injured patients.
        Crit Care Med. 2004; 32: 1049-1054
        • Sookplung P.
        • Siriussawakul A.
        • Malakouti A.
        • et al.
        Vasopressor use and effect on blood pressure after severe adult traumatic brain injury.
        Neurocrit Care. 2011; 15: 46-54
      2. Toro C, Ohnuma T, Komisarow J, et al. Early vasopressor utilization strategies and outcomes in critically ill patients with severe traumatic brain injury. Anesth Analg.:10.1213/ANE.0000000000005949.

        • Allen C.J.
        • Subhawong T.K.
        • Hanna M.M.
        • et al.
        Does vasopressin exacerbate cerebral edema in patients with severe traumatic brain injury?.
        Am Surg. 2018; 84: 43-50
        • Van Haren R.M.
        • Thorson C.M.
        • Ogilvie M.P.
        • et al.
        Vasopressin for cerebral perfusion pressure management in patients with severe traumatic brain injury: preliminary results of a randomized controlled trial.
        J Trauma Acute Care Surg. 2013; 75 (discussion 1030): 1024-1030
        • van Diepen S.
        • Katz J.N.
        • Albert N.M.
        • et al.
        Contemporary management of cardiogenic shock: a scientific statement from the american heart association.
        Circulation. 2017; 136: e232-e268
        • van Diepen S.
        Norepinephrine as a first-line inopressor in cardiogenic shock: oversimplification or best practice?.
        J Am Coll Cardiol. 2018; 72: 183-186
        • Zheng R.Z.
        • Lei Z.Q.
        • Yang R.Z.
        • et al.
        Identification and management of paroxysmal sympathetic hyperactivity after traumatic brain injury.
        Front Neurol. 2020; 11: 81
        • Lin C.C.
        • Yu J.H.
        • Lin C.C.
        • et al.
        Postintubation hemodynamic effects of intravenous lidocaine in severe traumatic brain injury.
        Am J Emerg Med. 2012; 30: 1782-1787
        • Volpi P.C.
        • Robba C.
        • Rota M.
        • et al.
        Trajectories of early secondary insults correlate to outcomes of traumatic brain injury: results from a large, single centre, observational study.
        BMC Emerg Med. 2018; 18: 52
        • Cuthbertson B.H.
        • Sprung C.L.
        • Annane D.
        • et al.
        The effects of etomidate on adrenal responsiveness and mortality in patients with septic shock.
        Intensive Care Med. 2009; 35: 1868-1876
        • Filanovsky Y.
        • Miller P.
        • Kao J.
        Myth: Ketamine should not be used as an induction agent for intubation in patients with head injury.
        CJEM. 2010; 12: 154-157
        • Cohen L.
        • Athaide V.
        • Wickham M.E.
        • et al.
        The effect of ketamine on intracranial and cerebral perfusion pressure and health outcomes: a systematic review.
        Ann Emerg Med. 2015; 65 (e2): 43-51
        • Strebel S.
        • Kaufmann M.
        • Maître L.
        • et al.
        Effects of ketamine on cerebral blood flow velocity in humans. Influence of pretreatment with midazolam or esmolol.
        Anaesthesia. 1995; 50: 223-228
        • Sakai K.
        • Cho S.
        • Fukusaki M.
        • et al.
        The effects of propofol with and without ketamine on human cerebral blood flow velocity and CO(2) response.
        Anesth Analg. 2000; 90: 377-382
        • Kovarik W.D.
        • Mayberg T.S.
        • Lam A.M.
        • et al.
        Succinylcholine does not change intracranial pressure, cerebral blood flow velocity, or the electroencephalogram in patients with neurologic injury.
        Anesth Analg. 1994; 78: 469-473
        • Patanwala A.E.
        • Erstad B.L.
        • Roe D.J.
        • et al.
        Succinylcholine is associated with increased mortality when used for rapid sequence intubation of severely brain injured patients in the emergency department.
        Pharmacotherapy. 2016; 36: 57-63
        • Martyn J.A.J.
        • Richtsfeld M.
        Succinylcholine-induced hyperkalemia in acquired pathologic statesetiologic factors and molecular mechanisms.
        Anesthesiol J Am Soc Anesthesiol. 2006; 104: 158-169
        • Matsumoto M.
        • Sakabe T.
        Effects of Anesthetic Agents and Other Drugs on Cerebral Blood Flow, Metabolism, and Intracranial Pressure.
        in: Cottrell J.E. Patel P. Warner D.S. Cottrell and Patel’s Neuroanesthesia. 6th edition. Elsevier, Edinburgh, Scotland2017: 74-90
        • Matta B.F.
        • Heath K.J.
        • Tipping K.
        • et al.
        Direct cerebral vasodilatory effects of sevoflurane and isoflurane.
        Anesthesiology. 1999; 91: 677-680
        • Reinstrup P.
        • Ryding E.
        • Algotsson L.
        • et al.
        Effects of nitrous oxide on human regional cerebral blood flow and isolated pial arteries.
        Anesthesiology. 1994; 81: 396-402
        • Algotsson L.
        • Messeter K.
        • Rosén I.
        • et al.
        Effects of nitrous oxide on cerebral haemodynamics and metabolism during isoflurane anaesthesia in man.
        Acta Anaesthesiol Scand. 1992; 36: 46-52
        • Kaisti K.K.
        • Långsjö J.W.
        • Aalto S.
        • et al.
        Effects of sevoflurane, propofol, and adjunct nitrous oxide on regional cerebral blood flow, oxygen consumption, and blood volume in humans.
        Anesthesiology. 2003; 99: 603-613
        • Oren R.E.
        • Rasool N.A.
        • Rubinstein E.H.
        Effect of ketamine on cerebral cortical blood flow and metabolism in rabbits.
        Stroke. 1987; 18: 441-444
        • Slupe A.M.
        • Kirsch J.R.
        Effects of anesthesia on cerebral blood flow, metabolism, and neuroprotection.
        J Cereb Blood Flow Metab. 2018; 38: 2192-2208
        • Albanese J.
        • Arnaud S.
        • Rey M.
        • et al.
        Ketamine decreases intracranial pressure and electroencephalographic activity in traumatic brain injury patients during propofol sedation.
        Anesthesiology. 1997; 87: 1328-1334
        • Godoy D.A.
        • Badenes R.
        • Pelosi P.
        • et al.
        Ketamine in acute phase of severe traumatic brain injury “an old drug for new uses?”.
        Crit Care. 2021; 25: 19
        • Ropper A.H.
        Hyperosmolar therapy for raised intracranial pressure.
        N Engl J Med. 2012; 367: 746-752
        • Sokhal N.
        • Rath G.P.
        • Chaturvedi A.
        • et al.
        Comparison of 20% mannitol and 3% hypertonic saline on intracranial pressure and systemic hemodynamics.
        J Clin Neurosci. 2017; 42: 148-154
        • Chen H.
        • Song Z.
        • Dennis J.A.
        Hypertonic saline versus other intracranial pressure–lowering agents for people with acute traumatic brain injury.
        Cochrane Database Syst Rev. 2020; 2020: CD010904
        • Fried H.I.
        • Nathan B.R.
        • Rowe A.S.
        • et al.
        The insertion and management of external ventricular drains: an evidence-based consensus statement : a statement for healthcare professionals from the neurocritical care society.
        Neurocrit Care. 2016; 24: 61-81
        • Lele A.V.
        • Hoefnagel A.L.
        • Schloemerkemper N.
        • et al.
        Perioperative management of adult patients with external ventricular and lumbar drains: guidelines from the society for neuroscience in anesthesiology and critical care.
        J Neurosurg Anesthesiol. 2017; 29: 191
        • Smielewski P.
        • Czosnyka M.
        • Steiner L.
        • et al.
        ICM+: software for on-line analysis of bedside monitoring data after severe head trauma.
        Acta Neurochir Suppl. 2005; 95: 43-49
        • MOBERG® CNS Monitor
        Micromed Group.
        (Available at:) (Accessed September 24, 2022)
      3. SickbayTM Platform | Virtual Care and Healthcare Data Analytics.
        (Available at:) (Accessed September 24, 2022)
        • Hu P.F.
        • Yang S.
        • Li H.C.
        • et al.
        Reliable collection of real-time patient physiologic data from less reliable networks: a “monitor of monitors” system (MoMs).
        J Med Syst. 2016; 41: 3
        • Baldassano S.N.
        • Roberson S.W.
        • Balu R.
        • et al.
        IRIS: a modular platform for continuous monitoring and caretaker notification in the intensive care unit.
        IEEE J Biomed Health Inform. 2020; 24: 2389-2397
      4. Masimo - Patient SafetyNet.
        (Available at:) (Accessed September 25, 2022)
        • Balestreri M.
        • Czosnyka M.
        • Hutchinson P.
        • et al.
        Impact of intracranial pressure and cerebral perfusion pressure on severe disability and mortality after head injury.
        Neurocrit Care. 2006; 4: 8-13
        • Vik A.
        • Nag T.
        • Fredriksli O.A.
        • et al.
        Relationship of “dose” of intracranial hypertension to outcome in severe traumatic brain injury.
        J Neurosurg. 2008; 109: 678-684
        • Badri S.
        • Chen J.
        • Barber J.
        • et al.
        Mortality and long-term functional outcome associated with intracranial pressure after traumatic brain injury.
        Intensive Care Med. 2012; 38: 1800-1809
        • Sorrentino E.
        • Diedler J.
        • Kasprowicz M.
        • et al.
        Critical thresholds for cerebrovascular reactivity after traumatic brain injury.
        Neurocrit Care. 2012; 16: 258-266
        • Helbok R.
        • Meyfroidt G.
        • Beer R.
        Intracranial pressure thresholds in severe traumatic brain injury: Con.
        Intensive Care Med. 2018; 44: 1318-1320
        • Gelabert-González M.
        • Ginesta-Galan V.
        • Sernamito-García R.
        • et al.
        The camino intracranial pressure device in clinical practice. Assessment in a 1000 cases.
        Acta Neurochir (Wien). 2006; 148: 435-441
        • Koskinen L.O.D.
        • Olivecrona M.
        Clinical experience with the intraparenchymal intracranial pressure monitoring Codman MicroSensor system.
        Neurosurgery. 2005; 56 (discussion 693-698): 693-698
        • Citerio G.
        • Piper I.
        • Chambers I.R.
        • et al.
        Multicenter clinical assessment of the Raumedic Neurovent-P intracranial pressure sensor: a report by the BrainIT group.
        Neurosurgery. 2008; 63 (discussion 1158): 1152-1158
        • Allin D.
        • Czosnyka M.
        • Czosnyka Z.
        Laboratory testing of the Pressio intracranial pressure monitor.
        Neurosurgery. 2008; 62 (; discussion 1161): 1158-1161
        • Lang J.M.
        • Beck J.
        • Zimmermann M.
        • et al.
        Clinical evaluation of intraparenchymal Spiegelberg pressure sensor.
        Neurosurgery. 2003; 52 (discussion 1459): 1455-1459
        • Wolfla C.E.
        • Luerssen T.G.
        • Bowman R.M.
        • et al.
        Brain tissue pressure gradients created by expanding frontal epidural mass lesion.
        J Neurosurg. 1996; 84: 642-647
        • Al-Tamimi Y.Z.
        • Helmy A.
        • Bavetta S.
        • et al.
        Assessment of zero drift in the codman intracranial pressure monitor: a study from 2 neurointensive care units.
        Neurosurgery. 2009; 64: 94-99
        • Zeiler F.A.
        • Ercole A.
        • Cabeleira M.
        • et al.
        Patient-specific ICP Epidemiologic Thresholds in Adult Traumatic Brain Injury: A CENTER-TBI Validation Study.
        J Neurosurg Anesthesiol. 2021; 33: 28-38
        • Chesnut R.M.
        • Temkin N.
        • Carney N.
        • et al.
        A trial of intracranial-pressure monitoring in traumatic brain injury.
        N Engl J Med. 2012; 367: 2471-2481
        • Robba C.
        • Graziano F.
        • Rebora P.
        • et al.
        Intracranial pressure monitoring in patients with acute brain injury in the intensive care unit (SYNAPSE-ICU): an international, prospective observational cohort study.
        Lancet Neurol. 2021; 20: 548-558
        • Evensen K.B.
        • Eide P.K.
        Measuring intracranial pressure by invasive, less invasive or non-invasive means: limitations and avenues for improvement.
        Fluids Barriers CNS. 2020; 17: 34
        • Foreman B.
        • Lissak I.A.
        • Kamireddi N.
        • et al.
        Challenges and opportunities in multimodal monitoring and data analytics in traumatic brain injury.
        Curr Neurol Neurosci Rep. 2021; 21: 6
        • Lundberg N.
        Continuous recording and control of ventricular fluid pressure in neurosurgical practice.
        J Neuropathol Exp Neurol. 1962; 21: 489
        • Martinez-Tejada I.
        • Arum A.
        • Wilhjelm J.E.
        • et al.
        B waves: a systematic review of terminology, characteristics, and analysis methods.
        Fluids Barriers CNS. 2019; 16: 33
        • Droste D.W.
        • Krauss J.K.
        • Berger W.
        • et al.
        Rhythmic oscillations with a wavelength of 0.5–2 min in transcranial Doppler recordings.
        Acta Neurol Scand. 1994; 90: 99-104
        • Rosner M.J.
        • Rosner S.D.
        • Johnson A.H.
        Cerebral perfusion pressure: management protocol and clinical results.
        J Neurosurg. 1995; 83: 949-962
        • Robertson C.S.
        • Valadka A.B.
        • Hannay H.J.
        • et al.
        Prevention of secondary ischemic insults after severe head injury.
        Crit Care Med. 1999; 27: 2086-2095
        • Rosner M.J.
        Introduction to cerebral perfusion pressure management.
        Neurosurg Clin N Am. 1995; 6: 761-773
        • Lang E.W.
        • Chesnut R.M.
        A bedside method for investigating the integrity and critical thresholds of cerebral pressure autoregulation in severe traumatic brain injury patients.
        Br J Neurosurg. 2000; 14: 117-126
        • Howells T.
        • Elf K.
        • Jones P.A.
        • et al.
        Pressure reactivity as a guide in the treatment of cerebral perfusion pressure in patients with brain trauma.
        J Neurosurg. 2005; 102: 311-317
        • Hawryluk G.W.J.
        • Aguilera S.
        • Buki A.
        • et al.
        A management algorithm for patients with intracranial pressure monitoring: the Seattle International Severe Traumatic Brain Injury Consensus Conference (SIBICC).
        Intensive Care Med. 2019; 45: 1783-1794
        • Rosenthal G.
        • Sanchez-Mejia R.O.
        • Phan N.
        • et al.
        Incorporating a parenchymal thermal diffusion cerebral blood flow probe in bedside assessment of cerebral autoregulation and vasoreactivity in patients with severe traumatic brain injury.
        J Neurosurg. 2011; 114: 62-70
        • Goettel N.
        • Patet C.
        • Rossi A.
        • et al.
        Monitoring of cerebral blood flow autoregulation in adults undergoing sevoflurane anesthesia: a prospective cohort study of two age groups.
        J Clin Monit Comput. 2016; 30: 255-264
        • Czosnyka M.
        • Smielewski P.
        • Kirkpatrick P.
        • et al.
        Monitoring of cerebral autoregulation in head-injured patients.
        Stroke. 1996; 27: 1829-1834
        • Czosnyka M.
        • Smielewski P.
        • Kirkpatrick P.
        • et al.
        Continuous assessment of the cerebral vasomotor reactivity in head injury.
        Neurosurgery. 1997; 41 (discussion 17-19): 11-17
        • Zeiler F.A.
        • Donnelly J.
        • Menon D.K.
        • et al.
        A description of a new continuous physiological index in traumatic brain injury using the correlation between pulse amplitude of intracranial pressure and cerebral perfusion pressure.
        J Neurotrauma. 2018; 35: 963-974
        • Eide P.K.
        • Park E.H.
        • Madsen J.R.
        Arterial blood pressure vs intracranial pressure in normal pressure hydrocephalus.
        Acta Neurol Scand. 2010; 122: 262-269
        • Evensen K.B.
        • Eide P.K.
        Mechanisms behind altered pulsatile intracranial pressure in idiopathic normal pressure hydrocephalus: role of vascular pulsatility and systemic hemodynamic variables.
        Acta Neurochir (Wien). 2020; 162: 1803-1813
        • Aries M.J.H.
        • Czosnyka M.
        • Budohoski K.P.
        • et al.
        Continuous monitoring of cerebrovascular reactivity using pulse waveform of intracranial pressure.
        Neurocrit Care. 2012; 17: 67-76
        • Zeiler F.A.
        • Ercole A.
        • Cabeleira M.
        • et al.
        Univariate comparison of performance of different cerebrovascular reactivity indices for outcome association in adult TBI: a CENTER-TBI study.
        Acta Neurochir (Wien). 2019; 161: 1217-1227
        • Steiner L.A.
        • Czosnyka M.
        • Piechnik S.K.
        • et al.
        Continuous monitoring of cerebrovascular pressure reactivity allows determination of optimal cerebral perfusion pressure in patients with traumatic brain injury.
        Crit Care Med. 2002; 30: 733-738
        • Aries M.J.H.
        • Czosnyka M.
        • Budohoski K.P.
        • et al.
        Continuous determination of optimal cerebral perfusion pressure in traumatic brain injury.
        Crit Care Med. 2012; 40: 2456-2463
        • Liu X.
        • Maurits N.M.
        • Aries M.J.H.
        • et al.
        Monitoring of optimal cerebral perfusion pressure in traumatic brain injured patients using a multi-window weighting algorithm.
        J Neurotrauma. 2017; 34: 3081-3088
        • Zeiler F.A.
        • Ercole A.
        • Cabeleira M.
        • et al.
        Comparison of performance of different optimal cerebral perfusion pressure parameters for outcome prediction in adult traumatic brain injury: a collaborative european neurotrauma effectiveness research in traumatic brain injury (CENTER-TBI) study.
        J Neurotrauma. 2019; 36: 1505-1517
        • Tas J.
        • Beqiri E.
        • van Kaam R.C.
        • et al.
        Targeting autoregulation-guided cerebral perfusion pressure after traumatic brain injury (COGiTATE): a feasibility randomized controlled clinical trial.
        J Neurotrauma. 2021; 38: 2790-2800
        • Bouzat P.
        • Almeras L.
        • Manhes P.
        • et al.
        Transcranial doppler to predict neurologic outcome after mild to moderate traumatic brain injury.
        Anesthesiology. 2016; 125: 346-354
        • Cardim D.
        • Robba C.
        • Donnelly J.
        • et al.
        Prospective study on noninvasive assessment of intracranial pressure in traumatic brain-injured patients: comparison of four methods.
        J Neurotrauma. 2016; 33: 792-802
        • Bellner J.
        • Romner B.
        • Reinstrup P.
        • et al.
        Transcranial Doppler sonography pulsatility index (PI) reflects intracranial pressure (ICP).
        Surg Neurol. 2004; 62 (discussion 51): 45-51
        • Robba C.
        • Cardim D.
        • Tajsic T.
        • et al.
        Ultrasound non-invasive measurement of intracranial pressure in neurointensive care: A prospective observational study.
        PLOS Med. 2017; 14: e1002356
        • Robba C.
        • Goffi A.
        • Geeraerts T.
        • et al.
        Brain ultrasonography: methodology, basic and advanced principles and clinical applications. A narrative review.
        Intensive Care Med. 2019; 45: 913-927
        • Zeiler F.A.
        • Donnelly J.
        • Cardim D.
        • et al.
        ICP versus laser doppler cerebrovascular reactivity indices to assess brain autoregulatory capacity.
        Neurocrit Care. 2018; 28: 194-202
        • Highton D.
        • Ghosh A.
        • Tachtsidis I.
        • et al.
        Monitoring cerebral autoregulation after brain injury: multimodal assessment of cerebral slow-wave oscillations using near-infrared spectroscopy.
        Anesth Analg. 2015; 121: 198-205
        • Roldán M.
        • Kyriacou P.A.
        Near-Infrared Spectroscopy (NIRS) in Traumatic Brain Injury (TBI).
        Sensors. 2021; 21: 1586
        • Zweifel C.
        • Castellani G.
        • Czosnyka M.
        • et al.
        Noninvasive Monitoring of Cerebrovascular Reactivity with Near Infrared Spectroscopy in Head-Injured Patients.
        J Neurotrauma. 2010; 27: 1951-1958
        • Timofeev I.
        • Czosnyka M.
        • Nortje J.
        • et al.
        Effect of decompressive craniectomy on intracranial pressure and cerebrospinal compensation following traumatic brain injury.
        J Neurosurg. 2008; 108: 66-73
        • Zweifel C.
        • Lavinio A.
        • Steiner L.A.
        • et al.
        Continuous monitoring of cerebrovascular pressure reactivity in patients with head injury.
        Neurosurg Focus. 2008; 25: E2
        • Zeiler F.A.
        • Czosnyka M.
        • Smielewski P.
        Optimal cerebral perfusion pressure via transcranial Doppler in TBI: application of robotic technology.
        Acta Neurochir (Wien). 2018; 160: 2149-2157
        • Sivakumar S.
        • Taccone F.S.
        • Rehman M.
        • et al.
        Hemodynamic and neuro-monitoring for neurocritically ill patients: An international survey of intensivists.
        J Crit Care. 2017; 39: 40-47
        • Ajčević M.
        • Furlanis G.
        • Miladinović A.
        • et al.
        Early EEG Alterations Correlate with CTP Hypoperfused Volumes and Neurological Deficit: A Wireless EEG Study in Hyper-Acute Ischemic Stroke.
        Ann Biomed Eng. 2021; 49: 2150-2158
        • Sutcliffe L.
        • Lumley H.
        • Shaw L.
        • et al.
        Surface electroencephalography (EEG) during the acute phase of stroke to assist with diagnosis and prediction of prognosis: a scoping review.
        BMC Emerg Med. 2022; 22: 29
        • Yu Z.
        • Wen D.
        • Zheng J.
        • et al.
        Predictive accuracy of alpha-delta ratio on quantitative electroencephalography for delayed cerebral ischemia in patients with aneurysmal subarachnoid hemorrhage: meta-analysis.
        World Neurosurg. 2019; 126: e510-e516
        • Newey C.R.
        • Sarwal A.
        • Hantus S.
        Continuous electroencephalography (cEEG) changes precede clinical changes in a case of progressive cerebral edema.
        Neurocrit Care. 2013; 18: 261-265
        • Sheikh Z.B.
        • Maciel C.B.
        • Dhakar M.B.
        • et al.
        Nonepileptic Electroencephalographic Correlates of Episodic Increases in Intracranial Pressure.
        J Clin Neurophysiol. 2022; 39: 149-158
        • Lee H.
        • Mizrahi M.A.
        • Hartings J.A.
        • et al.
        Continuous Electroencephalography after Moderate to Severe Traumatic Brain Injury.
        Crit Care Med. 2019; 47: 574-582
        • Haveman M.E.
        • Van Putten M.J.A.M.
        • Hom H.W.
        • et al.
        Predicting outcome in patients with moderate to severe traumatic brain injury using electroencephalography.
        Crit Care Lond Engl. 2019; 23: 401
        • Vespa P.
        • Tubi M.
        • Claassen J.
        • et al.
        Metabolic crisis occurs with seizures and periodic discharges after brain trauma.
        Ann Neurol. 2016; 79: 579-590
        • Waziri A.
        • Claassen J.
        • Stuart R.M.
        • et al.
        Intracortical electroencephalography in acute brain injury.
        Ann Neurol. 2009; 66: 366-377
        • Hartings J.A.
        • Bullock M.R.
        • Okonkwo D.O.
        • et al.
        Spreading depolarisations and outcome after traumatic brain injury: a prospective observational study.
        Lancet Neurol. 2011; 10: 1058-1064
        • Mikell C.B.
        • Dyster T.G.
        • Claassen J.
        Invasive seizure monitoring in the critically-Ill brain injury patient: Current practices and a review of the literature.
        Seizure. 2016; 41: 201-205
        • Rostami E.
        • Engquist H.
        • Enblad P.
        Imaging of Cerebral Blood Flow in Patients with Severe Traumatic Brain Injury in the Neurointensive Care.
        Front Neurol. 2014; 5 (Available at:) (Accessed September 21, 2022)
        • Vajkoczy P.
        • Roth H.
        • Horn P.
        • et al.
        Continuous monitoring of regional cerebral blood flow: experimental and clinical validation of a novel thermal diffusion microprobe.
        J Neurosurg. 2000; 93: 265-274
        • Tackla R.
        • Hinzman J.M.
        • Foreman B.
        • et al.
        Assessment of Cerebrovascular Autoregulation Using Regional Cerebral Blood Flow in Surgically Managed Brain Trauma Patients.
        Neurocrit Care. 2015; 23: 339-346
        • Hinzman J.M.
        • Andaluz N.
        • Shutter L.A.
        • et al.
        Inverse neurovascular coupling to cortical spreading depolarizations in severe brain trauma.
        Brain J Neurol. 2014; 137: 2960-2972
        • Akbik O.S.
        • Carlson A.P.
        • Krasberg M.
        • et al.
        The Utility of Cerebral Blood Flow Assessment in TBI.
        Curr Neurol Neurosci Rep. 2016; 16: 72
        • Rolfe P.
        In Vivo near-infrared spectroscopy.
        Annu Rev Biomed Eng. 2000; 2: 715-754
        • Ghosh A.
        • Elwell C.
        • Smith M.
        Cerebral near-infrared spectroscopy in adults: a work in progress.
        Anesth Analg. 2012; 115: 1373-1383
        • Steppan J.
        • Hogue C.W.
        Cerebral and tissue oximetry.
        Best Pract Res Clin Anaesthesiol. 2014; 28: 429-439
        • Yoshitani K.
        • Kawaguchi M.
        • Miura N.
        • et al.
        Effects of hemoglobin concentration, skull thickness, and the area of the cerebrospinal fluid layer on near-infrared spectroscopy measurements.
        Anesthesiology. 2007; 106: 458-462
        • Robertson C.S.
        • Gopinath S.P.
        • Chance B.
        A new application for near-infrared spectroscopy: detection of delayed intracranial hematomas after head injury.
        J Neurotrauma. 1995; 12: 591-600
        • Gill A.S.
        • Rajneesh K.F.
        • Owen C.M.
        • et al.
        Early optical detection of cerebral edema in vivo.
        J Neurosurg. 2011; 114: 470-477
        • Bush B.
        • Sam K.
        • Rosenblatt K.
        The Role of Near-infrared Spectroscopy in Cerebral Autoregulation Monitoring.
        J Neurosurg Anesthesiol. 2019; 31: 269-270
        • Kirkman M.A.
        • Smith M.
        Brain oxygenation monitoring.
        Anesthesiol Clin. 2016; 34: 537-556
        • Purins K.
        • Enblad P.
        • Sandhagen B.
        • et al.
        Brain tissue oxygen monitoring: a study of in vitro accuracy and stability of Neurovent-PTO and Licox sensors.
        Acta Neurochir (Wien). 2010; 152: 681-688
        • Oddo M.
        • Nduom E.
        • Frangos S.
        • et al.
        Acute lung injury is an independent risk factor for brain hypoxia after severe traumatic brain injury.
        Neurosurgery. 2010; 67: 338-344
        • Oddo M.
        • Levine J.M.
        • Kumar M.
        • et al.
        Anemia and brain oxygen after severe traumatic brain injury.
        Intensive Care Med. 2012; 38: 1497-1504
        • Menon D.K.
        • Coles J.P.
        • Gupta A.K.
        • et al.
        Diffusion limited oxygen delivery following head injury.
        Crit Care Med. 2004; 32: 1384-1390
        • Van Den Brink W.A.
        • Van Santbrink H.
        • Steyerberg E.W.
        • et al.
        Brain oxygen tension in severe head injury.
        Neurosurgery. 2000; 46: 868-878
        • Johnston A.J.
        • Steiner L.A.
        • Coles J.P.
        • et al.
        Effect of cerebral perfusion pressure augmentation on regional oxygenation and metabolism after head injury.
        Crit Care Med. 2005; 33: 189-195
        • Oddo M.
        Bösel J, and the participants in the international multidisciplinary consensus conference on multimodality monitoring. monitoring of brain and systemic oxygenation in neurocritical care patients.
        Neurocrit Care. 2014; 21: 103-120
        • Quintard H.
        • Patet C.
        • Suys T.
        • et al.
        Normobaric hyperoxia is associated with increased cerebral excitotoxicity after severe traumatic brain injury.
        Neurocrit Care. 2015; 22: 243-250
        • Damiani E.
        • Adrario E.
        • Girardis M.
        • et al.
        Arterial hyperoxia and mortality in critically ill patients: a systematic review and meta-analysis.
        Crit Care. 2014; 18https://doi.org/10.1186/s13054-014-0711-x
        • Martini R.P.
        • Deem S.
        • Yanez N.D.
        • et al.
        Management guided by brain tissue oxygen monitoring and outcome following severe traumatic brain injury.
        J Neurosurg. 2009; 111: 644-649
        • Brain Trauma Foundation, American Association of Neurological Surgeons, Congress of Neurological Surgeons
        Guidelines for the management of severe traumatic brain injury.
        J Neurotrauma. 2007; 24: S1-S106
        • Spiotta A.M.
        • Stiefel M.F.
        • Gracias V.H.
        • et al.
        Brain tissue oxygen-directed management and outcome in patients with severe traumatic brain injury.
        J Neurosurg. 2010; 113: 571-580
        • Oddo M.
        • Levine J.M.
        • Mackenzie L.
        • et al.
        Brain hypoxia is associated with short-term outcome after severe traumatic brain injury independently of intracranial hypertension and low cerebral perfusion pressure.
        Neurosurgery. 2011; 69 (; discussion 1045): 1037-1045
        • Bernard F.
        • Barsan W.
        • Diaz-Arrastia R.
        • et al.
        Brain Oxygen Optimization in Severe Traumatic Brain Injury (BOOST-3): a multicentre, randomised, blinded-endpoint, comparative effectiveness study of brain tissue oxygen and intracranial pressure monitoring versus intracranial pressure alone.
        BMJ Open. 2022; 12: e060188
        • Okonkwo D.O.
        • Shutter L.A.
        • Moore C.
        • et al.
        Brain Tissue Oxygen Monitoring and Management in Severe Traumatic Brain Injury (BOOST-II): a Phase II Randomized Trial.
        Crit Care Med. 2017; 45: 1907-1914
        • Chesnut R.
        • Aguilera S.
        • Buki A.
        • et al.
        A management algorithm for adult patients with both brain oxygen and intracranial pressure monitoring: the Seattle International Severe Traumatic Brain Injury Consensus Conference (SIBICC).
        Intensive Care Med. 2020; 46: 919-929
        • Goetting M.G.
        • Preston G.
        Jugular bulb catheterization does not increase intracranial pressure.
        Intensive Care Med. 1991; 17: 195-198
        • Nims L.F.
        • Gibbs E.L.
        • Lennox W.G.
        Arterial and cerebral venous blood.
        J Biol Chem. 1942; 145: 189-195
        • Obrist W.D.
        • Langfitt T.W.
        • Jaggi J.L.
        • et al.
        Cerebral blood flow and metabolism in comatose patients with acute head injury: Relationship to intracranial hypertension.
        J Neurosurg. 1984; 61: 241-253
        • Kety S.S.
        • Schmidt C.F.
        The nitrous oxide method for the quantitative determination of cerebral blood flow in man: theory, procedure and normal values.
        J Clin Invest. 1948; 27: 476-483
        • Cormio M.
        • Valadka A.B.
        • Robertson C.S.
        Elevated jugular venous oxygen saturation after severe head injury.
        J Neurosurg. 1999; 90: 9-15
        • Robertson C.S.
        • Gopinath S.P.
        • Goodman J.C.
        • et al.
        SjvO2 monitoring in head-injured patients.
        J Neurotrauma. 1995; 12: 891-896
        • Cruz J.
        The first decade of continuous monitoring of jugular bulb oxyhemoglobin saturation: Management strategies and clinical outcome.
        Crit Care Med. 1998; 26: 344-351
        • Carpenter K.L.H.
        • Young A.M.H.
        • Hutchinson P.J.
        Advanced monitoring in traumatic brain injury: microdialysis.
        Curr Opin Crit Care. 2017; 23: 103-109
        • Rogers M.L.
        • Feuerstein D.
        • Leong C.L.
        • et al.
        Continuous online microdialysis using microfluidic sensors: dynamic neurometabolic changes during spreading depolarization.
        ACS Chem Neurosci. 2013; 4: 799-807
        • Adamides A.A.
        • Rosenfeldt F.L.
        • Winter C.D.
        • et al.
        Brain tissue lactate elevations predict episodes of intracranial hypertension in patients with traumatic brain injury.
        J Am Coll Surg. 2009; 209: 531-539
        • Belli A.
        • Sen J.
        • Petzold A.
        • et al.
        Metabolic failure precedes intracranial pressure rises in traumatic brain injury: a microdialysis study.
        Acta Neurochir (Wien). 2008; 150: 461-470
        • Larach D.B.
        • Kofke W.A.
        • Le Roux P.
        Potential non-hypoxic/ischemic causes of increased cerebral interstitial fluid lactate/pyruvate ratio: a review of available literature.
        Neurocrit Care. 2011; 15: 609-622
        • Hutchinson P.J.
        • Jalloh I.
        • Helmy A.
        • et al.
        Consensus statement from the 2014 International Microdialysis Forum.
        Intensive Care Med. 2015; 41: 1517-1528
        • Timofeev I.
        • Carpenter K.L.H.
        • Nortje J.
        • et al.
        Cerebral extracellular chemistry and outcome following traumatic brain injury: a microdialysis study of 223 patients.
        Brain. 2011; 134: 484-494
        • Oddo M.
        • Schmidt J.M.
        • Carrera E.
        • et al.
        Impact of tight glycemic control on cerebral glucose metabolism after severe brain injury: a microdialysis study.
        Crit Care Med. 2008; 36: 3233-3238
        • Vespa P.M.
        • McArthur D.
        • O’Phelan K.
        • et al.
        Persistently low extracellular glucose correlates with poor outcome 6 months after human traumatic brain injury despite a lack of increased lactate: a microdialysis study.
        J Cereb Blood Flow Metab. 2003; 23: 865-877
        • Chamoun R.
        • Suki D.
        • Gopinath S.P.
        • et al.
        Role of extracellular glutamate measured by cerebral microdialysis in severe traumatic brain injury.
        J Neurosurg. 2010; 113: 564-570
        • Clausen T.
        • Alves O.L.
        • Reinert M.
        • et al.
        Association between elevated brain tissue glycerol levels and poor outcome following severe traumatic brain injury.
        J Neurosurg. 2005; 103: 233-238