Review Article| Volume 41, ISSUE 1, P191-209, March 2023

Perioperative Fluid Management and Volume Assessment


      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribers receive full online access to your subscription and archive of back issues up to and including 2002.

      Content published before 2002 is available via pay-per-view purchase only.


      Subscribe to Anesthesiology Clinics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Bellamy M.C.
        Wet, dry or something else?.
        Br J Anaesth. 2006; 97: 755-757
        • Doherty M.
        • Buggy D.J.
        Intraoperative fluids: how much is too much?.
        Br J Anaesth. 2012; 109: 69-79
        • Holte K.
        • Sharrock N.E.
        • Kehlet H.
        Pathophysiology and clinical implications of perioperative fluid excess.
        Br J Anaesth. 2002; 89: 622-632
        • Junghans T.
        • Neuss H.
        • Strohauer M.
        • et al.
        Hypovolemia after traditional preoperative care in patients undergoing colonic surgery is underrepresented in conventional hemodynamic monitoring.
        Int J Colorectal Dis. 2006; 21: 693-697
        • Güenaga K.F.
        • Matos D.
        • Wille-Jørgensen P.
        Mechanical bowel preparation for elective colorectal surgery.
        Cochrane Database Syst Rev. 2011; 9: CD001544
        • Holte K.
        Pathophysiology and clinical implications of peroperative fluid management in elective surgery.
        Dan Med Bull. 2010; 57: B4156
        • Reithner L.
        • Johansson H.
        • Strouth L.
        Insensible perspiration during anaesthesia and surgery.
        Acta Anaesthesiol Scand. 1980; 24: 362-366
        • Lamke L.O.
        • Nilsson G.E.
        • Reithner H.L.
        Water loss by evaporation from the abdominal cavity during surgery.
        Acta Chir Scand. 1977; 143: 279-284
        • Danielsson E.J.D.
        • Lejbman I.
        • Åkeson J.
        Fluid deficits during prolonged overnight fasting in young healthy adults.
        Acta Anaesthesiol Scand. 2019; 63: 195-199
        • Mendelson C.L.
        The aspiration of stomach contents into the lungs during obstetric anesthesia.
        Am J Obstet Gynecol. 1946; 52: 191-205
        • Brady M.
        • Kinn S.
        • Stuart P.
        Preoperative fasting for adults to prevent perioperative complications.
        Cochrane Database Syst Rev. 2003; 4: CD004423
        • Maltby J.R.
        • Sutherland A.D.
        • Sale J.P.
        • et al.
        Preoperative oral fluids: is a five-hour fast justified prior to elective surgery?.
        Anesth Analg. 1986; 65: 1112-1116
        • Okabe T.
        • Terashima H.
        • Sakamoto A.
        A comparison of gastric emptying of soluble solid meals and clear fluids matched for volume and energy content: a pilot crossover study.
        Anaesthesia. 2017; 72: 1344-1350
        • Van de Putte P.
        • Vernieuwe L.
        • Jerjir A.
        • et al.
        When fasted is not empty: a retrospective cohort study of gastric content in fasted surgical patientsdagger.
        Br J Anaesth. 2017; 118: 363-371
      1. Practice guidelines for preoperative fasting and the use of pharmacologic agents to reduce the risk of pulmonary aspiration: application to healthy patients undergoing elective procedures: an updated report by the american society of anesthesiologists task force on preoperative fasting and the use of pharmacologic agents to reduce the risk of pulmonary aspiration.
        Anesthesiology. 2017; 126: 376-393
        • Smith I.
        • Kranke P.
        • Murat I.
        • et al.
        • European Society of A
        Perioperative fasting in adults and children: guidelines from the European Society of Anaesthesiology.
        Eur J Anaesthesiol. 2011; 28: 556-569
        • Thomas M.
        • Morrison C.
        • Newton R.
        • et al.
        Consensus statement on clear fluids fasting for elective pediatric general anesthesia.
        Paediatr Anaesth. 2018; 28: 411-414
        • Morrison C.E.
        • Ritchie-McLean S.
        • Jha A.
        • et al.
        Two hours too long: time to review fasting guidelines for clear fluids.
        Br J Anaesth. 2020; S0007-0912: 31004-31009
        • Han J.C.
        • Pham T.
        • Taberner A.J.
        • et al.
        Solving a century-old conundrum underlying cardiac force-length relations.
        Am J Physiol Heart Circ Physiol. 2019; 316: H781-H793
        • Marik P.E.
        • Monnet X.
        • Teboul J.L.
        Hemodynamic parameters to guide fluid therapy.
        Ann Intensive Care. 2011; 1: 1
        • Marik P.E.
        • Cavallazzi R.
        Does the central venous pressure predict fluid responsiveness? An updated meta-analysis and a plea for some common sense.
        Crit Care Med. 2013; 41: 1774-1781
        • Vincent J.L.
        • Weil M.H.
        Fluid challenge revisited.
        Crit Care Med. 2006; 34: 1333-1337
        • Michard F.
        • Teboul J.L.
        Predicting fluid responsiveness in ICU patients: a critical analysis of the evidence.
        Chest. 2002; 121: 2000-2008
        • Evans L.
        • Rhodes A.
        • Alhazzani W.
        • et al.
        Surviving Sepsis Campaign: International Guidelines for management of sepsis and septic shock 2021.
        Crit Care Med. 2021; 49: e1063-e1143
        • Bentzer P.
        • Griesdale D.E.
        • Boyd J.
        • et al.
        Will This Hemodynamically Unstable Patient Respond to a Bolus of Intravenous Fluids?.
        JAMA. 2016; 316: 1298-1309
        • Kumar A.
        • Anel R.
        • Bunnell E.
        • et al.
        Pulmonary artery occlusion pressure and central venous pressure fail to predict ventricular filling volume, cardiac performance, or the response to volume infusion in normal subjects.
        Crit Care Med. 2004; 32: 691-699
        • Osman D.
        • Ridel C.
        • Ray P.
        • et al.
        Cardiac filling pressures are not appropriate to predict hemodynamic response to volume challenge.
        Crit Care Med. 2007; 35: 64-68
        • Michard F.
        • Teboul J.L.
        Using heart-lung interactions to assess fluid responsiveness during mechanical ventilation.
        Crit Care. 2000; 4: 282-289
        • Sibbald W.J.
        • Keenan S.P.
        Show me the evidence: a critical appraisal of the Pulmonary Artery Catheter Consensus Conference and other musings on how critical care practitioners need to improve the way we conduct business.
        Crit Care Med. 1997; 25: 2060-2063
        • Marik P.E.
        • Cavallazzi R.
        • Vasu T.
        • et al.
        Dynamic changes in arterial waveform derived variables and fluid responsiveness in mechanically ventilated patients: a systematic review of the literature.
        Crit Care Med. 2009; 37: 2642-2647
        • Mathis M.R.
        • Schechtman S.A.
        • Engoren M.C.
        • et al.
        Arterial Pressure Variation in Elective Noncardiac Surgery: Identifying Reference Distributions and Modifying Factors.
        Anesthesiology. 2017; 126: 249-259
        • Dorje P.
        • Tremper K.K.
        Systolic pressure variation: a dynamic measure of the adequacy of intravascular volume, Issue 3 edition. Seminars in Anesthesia.
        Perioper Med Pain. 2005; 24: 147-153
        • Perel A.
        • Pizov R.
        • Cotev S.
        Systolic blood pressure variation is a sensitive indicator of hypovolemia in ventilated dogs subjected to graded hemorrhage.
        Anesthesiology. 1987; 67: 498-502
        • Tavernier B.
        • Makhotine O.
        • Lebuffe G.
        • et al.
        Systolic pressure variation as a guide to fluid therapy in patients with sepsis-induced hypotension.
        Anesthesiology. 1998; 89: 1313-1321
        • Lopes M.R.
        • Oliveira M.A.
        • Pereira V.O.
        • et al.
        Goal-directed fluid management based on pulse pressure variation monitoring during high-risk surgery: a pilot randomized controlled trial.
        Crit Care. 2007; 11: R100
        • Michard F.
        • Boussat S.
        • Chemla D.
        • et al.
        Relation between respiratory changes in arterial pulse pressure and fluid responsiveness in septic patients with acute circulatory failure.
        Am J Respir Crit Care Med. 2000; 162: 134-138
        • Denault A.Y.
        • Gasior T.A.
        • Gorcsan J.
        • et al.
        Determinants of aortic pressure variation during positive-pressure ventilation in man.
        Chest. 1999; 116: 176-186
        • Soubrier S.
        • Saulnier F.
        • Hubert H.
        • et al.
        Can dynamic indicators help the prediction of fluid responsiveness in spontaneously breathing critically ill patients?.
        Intensive Care Med. 2007; 33: 1117-1124
        • Partridge B.L.
        Use of pulse oximetry as a noninvasive indicator of intravascular volume status.
        J Clin Monit. 1987; 3: 263-268
        • Chu H.
        • Wang Y.
        • Sun Y.
        • et al.
        Accuracy of pleth variability index to predict fluid responsiveness in mechanically ventilated patients: a systematic review and meta-analysis.
        J Clin Monit Comput. 2016; 30: 265-274
        • Cannesson M.
        • Desebbe O.
        • Rosamel P.
        • et al.
        Pleth variability index to monitor the respiratory variations in the pulse oximeter plethysmographic waveform amplitude and predict fluid responsiveness in the operating theatre.
        Br J Anaesth. 2008; 101: 200-206
        • Cannesson M.
        • Besnard C.
        • Durand P.G.
        • et al.
        Relation between respiratory variations in pulse oximetry plethysmographic waveform amplitude and arterial pulse pressure in ventilated patients.
        Crit Care. 2005; 9: R562-R568
        • Zhang Z.
        • Lu B.
        • Sheng X.
        • et al.
        Accuracy of stroke volume variation in predicting fluid responsiveness: a systematic review and meta-analysis.
        J Anesth. 2011; 25: 904-916
        • Hadian M.
        • Kim H.K.
        • Severyn D.A.
        • et al.
        Cross-comparison of cardiac output trending accuracy of LiDCO, PiCCO, FloTrac and pulmonary artery catheters.
        Crit Care. 2010; 14: R212
        • Uchino S.
        • Bellomo R.
        • Morimatsu H.
        • et al.
        Pulmonary artery catheter versus pulse contour analysis: a prospective epidemiological study.
        Crit Care. 2006; 10: R174
        • Ciozda W.
        • Kedan I.
        • Kehl D.W.
        • et al.
        The efficacy of sonographic measurement of inferior vena cava diameter as an estimate of central venous pressure.
        Cardiovasc Ultrasound. 2016; 14: 33
        • Orso D.
        • Paoli I.
        • Piani T.
        • et al.
        Accuracy of ultrasonographic measurements of inferior vena cava to determine fluid responsiveness: a systematic review and meta-analysis.
        J Intensive Care Med. 2020; 35: 354-363
        • Long E.
        • Oakley E.
        • Duke T.
        • et al.
        PRiEDIC: Does respiratory variation in inferior vena cava diameter predict fluid responsiveness: a systematic review and meta-analysis.
        Shock. 2017; 47: 550-559
        • Si X.
        Meta-analysis of ventilated versus spontaneously breathing patients in predicting fluid responsiveness by inferior vena cava variation.
        in: Cao D. Xu H. Guan X. International journal of clinical medicine. 2018
        • Zhang Z.
        • Xu X.
        • Ye S.
        • et al.
        Ultrasonographic measurement of the respiratory variation in the inferior vena cava diameter is predictive of fluid responsiveness in critically ill patients: systematic review and meta-analysis.
        Ultrasound Med Biol. 2014; 40: 845-853
        • Via G.
        • Tavazzi G.
        • Price S.
        Ten situations where inferior vena cava ultrasound may fail to accurately predict fluid responsiveness: a physiologically based point of view.
        Intensive Care Med. 2016; 42: 1164-1167
        • Antequera Martin A.M.
        • Barea Mendoza J.A.
        • Muriel A.
        • et al.
        Buffered solutions versus 0.9% saline for resuscitation in critically ill adults and children.
        Cochrane Database Syst Rev. 2019; 7: CD012247
        • Gottlieb M.
        • Petrak V.
        • Binkley C.
        Are balanced crystalloid solutions better than normal saline solution for the resuscitation of children and adult patients?.
        Ann Emerg Med. 2020; 75: 532-534
        • Self W.H.
        • Semler M.W.
        • Wanderer J.P.
        • et al.
        Investigators S-E: balanced crystalloids versus saline in noncritically ill adults.
        N Engl J Med. 2018; 378: 819-828
        • Finfer S.
        • Micallef S.
        • Hammond N.
        • et al.
        Australian New zealand intensive care society clinical trials g: balanced multielectrolyte solution versus saline in critically ill adults.
        N Engl J Med. 2022; 386: 815-826
        • Young P.
        • Bailey M.
        • Beasley R.
        • et al.
        Effect of a buffered crystalloid solution vs saline on acute kidney injury among patients in the intensive care unit: the split randomized clinical trial.
        JAMA. 2015; 314: 1701-1710
        • Zampieri F.G.
        • Machado F.R.
        • Biondi R.S.
        • et al.
        Effect of intravenous fluid treatment with a balanced solution vs 0.9% saline solution on mortality in critically ill patients: the basics randomized clinical trial.
        JAMA. 2021; 326: 1-12
        • Semler M.W.
        • Self W.H.
        • Wanderer J.P.
        • et al.
        balanced crystalloids versus saline in critically ill adults.
        N Engl J Med. 2018; 378: 829-839
        • Pfortmueller C.A.
        • Faeh L.
        • Muller M.
        • et al.
        Fluid management in patients undergoing cardiac surgery: effects of an acetate- versus lactate-buffered balanced infusion solution on hemodynamic stability (HEMACETAT).
        Crit Care. 2019; 23: 159
        • Malbrain M.
        • Langer T.
        • Annane D.
        • et al.
        Intravenous fluid therapy in the perioperative and critical care setting: executive summary of the international fluid academy (IFA).
        Ann Intensive Care. 2020; 10: 64
        • Finfer S.
        • Bellomo R.
        • Boyce N.
        • et al.
        A comparison of albumin and saline for fluid resuscitation in the intensive care unit.
        N Engl J Med. 2004; 350: 2247-2256
        • Myburgh J.
        • Cooper D.J.
        • Finfer S.
        • et al.
        Saline or albumin for fluid resuscitation in patients with traumatic brain injury.
        N Engl J Med. 2007; 357: 874-884
        • Caironi P.
        • Tognoni G.
        • Masson S.
        • et al.
        Albumin replacement in patients with severe sepsis or septic shock.
        N Engl J Med. 2014; 370: 1412-1421
        • Frenette A.J.
        • Bouchard J.
        • Bernier P.
        • et al.
        Albumin administration is associated with acute kidney injury in cardiac surgery: a propensity score analysis.
        Crit Care. 2014; 18: 602
        • Kingeter A.J.
        • Raghunathan K.
        • Munson S.H.
        • et al.
        Association between albumin administration and survival in cardiac surgery: a retrospective cohort study.
        Can J Anaesth. 2018; 65: 1218-1227
        • Thacker J.K.
        • Mountford W.K.
        • Ernst F.R.
        • et al.
        perioperative fluid utilization variability and association with outcomes: considerations for enhanced recovery efforts in sample us surgical populations.
        Ann Surg. 2016; 263: 502-510
        • Tambyraja A.L.
        • Sengupta F.
        • MacGregor A.B.
        • et al.
        Patterns and clinical outcomes associated with routine intravenous sodium and fluid administration after colorectal resection.
        World J Surg. 2004; 28 (; discussion 1051-2): 1046-1051
        • Brandstrup B.
        • Tønnesen H.
        • Beier-Holgersen R.
        • et al.
        Therapy DSGoPF: effects of intravenous fluid restriction on postoperative complications: comparison of two perioperative fluid regimens: a randomized assessor-blinded multicenter trial.
        Ann Surg. 2003; 238: 641-648
        • Lobo D.N.
        • Bostock K.A.
        • Neal K.R.
        • et al.
        Effect of salt and water balance on recovery of gastrointestinal function after elective colonic resection: a randomised controlled trial.
        Lancet. 2002; 359: 1812-1818
        • Nisanevich V.
        • Felsenstein I.
        • Almogy G.
        • et al.
        Effect of intraoperative fluid management on outcome after intraabdominal surgery.
        Anesthesiology. 2005; 103: 25-32
        • Shin C.H.
        • Long D.R.
        • McLean D.
        • et al.
        Effects of intraoperative fluid management on postoperative outcomes: a hospital registry study.
        Ann Surg. 2018; 267: 1084-1092
        • Myles P.S.
        • Bellomo R.
        • Corcoran T.
        • et al.
        Restrictive versus Liberal Fluid Therapy for Major Abdominal Surgery.
        N Engl J Med. 2018; 378: 2263-2274
        • Messina A.
        • Robba C.
        • Calabro L.
        • et al.
        Perioperative liberal versus restrictive fluid strategies and postoperative outcomes: a systematic review and metanalysis on randomised-controlled trials in major abdominal elective surgery.
        Crit Care. 2021; 25: 205
        • Gustafsson U.O.
        • Scott M.J.
        • Hubner M.
        • et al.
        Guidelines for perioperative care in elective colorectal surgery: enhanced recovery after surgery (ERAS.
        World J Surg. 2019; 43: 659-695
        • Melloul E.
        • Lassen K.
        • Roulin D.
        • et al.
        Guidelines for perioperative care for pancreatoduodenectomy: enhanced recovery after surgery (ERAS) recommendations 2019.
        World J Surg. 2020; 44: 2056-2084
        • Nelson G.
        • Bakkum-Gamez J.
        • Kalogera E.
        • et al.
        Guidelines for perioperative care in gynecologic/oncology: enhanced recovery after surgery (ERAS) society recommendations-2019 update.
        Int J Gynecol Cancer. 2019; 29: 651-668
        • Engelman D.T.
        • Ben Ali W.
        • Williams J.B.
        • et al.
        Guidelines for perioperative care in cardiac surgery: enhanced recovery after surgery society recommendations.
        JAMA Surg. 2019; 154: 755-766
        • Corcoran T.
        • Rhodes J.E.
        • Clarke S.
        • et al.
        Perioperative fluid management strategies in major surgery: a stratified meta-analysis.
        Anesth Analg. 2012; 114: 640-651
        • Benes J.
        • Giglio M.
        • Brienza N.
        • et al.
        The effects of goal-directed fluid therapy based on dynamic parameters on post-surgical outcome: a meta-analysis of randomized controlled trials.
        Crit Care. 2014; 18: 584
        • Pearse R.M.
        • Harrison D.A.
        • MacDonald N.
        • et al.
        Effect of a perioperative, cardiac output-guided hemodynamic therapy algorithm on outcomes following major gastrointestinal surgery: a randomized clinical trial and systematic review.
        JAMA. 2014; 311: 2181-2190
        • Messina A.
        • Robba C.
        • Calabro L.
        • et al.
        Association between perioperative fluid administration and postoperative outcomes: a 20-year systematic review and a meta-analysis of randomized goal-directed trials in major visceral/noncardiac surgery.
        Crit Care. 2021; 25: 43
        • Chong M.A.
        • Wang Y.
        • Berbenetz N.M.
        • et al.
        Does goal-directed haemodynamic and fluid therapy improve peri-operative outcomes?: A systematic review and meta-analysis.
        Eur J Anaesthesiol. 2018; 35: 469-483
        • Wrzosek A.
        • Jakowicka-Wordliczek J.
        • Zajaczkowska R.
        • et al.
        Perioperative restrictive versus goal-directed fluid therapy for adults undergoing major non-cardiac surgery.
        Cochrane Database Syst Rev. 2019; 12: CD012767
        • Ebm C.C.
        • Sutton L.
        • Rhodes A.
        • et al.
        Cost-effectiveness in goal-directed therapy: are the dollars spent worth the value?.
        J Cardiothorac Vasc Anesth. 2014; 28: 1660-1666
        • Malbrain M.L.N.G.
        • Langer T.
        • Annane D.
        • et al.
        Intravenous fluid therapy in the perioperative and critical care setting: executive summary of the International Fluid Academy (IFA).
        Ann Intensive Care. 2020; 10: 64
        • Malbrain M.L.N.G.
        • Van Regenmortel N.
        • Saugel B.
        • et al.
        Principles of fluid management and stewardship in septic shock: it is time to consider the four D's and the four phases of fluid therapy.
        Ann Intensive Care. 2018; 8: 66
        • Uz Z.
        • Ince C.
        • Guerci P.
        • et al.
        Recruitment of sublingual microcirculation using handheld incident dark field imaging as a routine measurement tool during the postoperative de-escalation phase-a pilot study in post ICU cardiac surgery patients.
        Perioper Med (Lond). 2018; 7: 18