Advertisement
Review Article| Volume 41, ISSUE 1, P263-281, March 2023

Impact of Intensive Care Unit Nutrition on the Microbiome and Patient Outcomes

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribers receive full online access to your subscription and archive of back issues up to and including 2002.

      Content published before 2002 is available via pay-per-view purchase only.

      Subscribe:

      Subscribe to Anesthesiology Clinics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Gilbert J.A.
        • Blaser M.J.
        • Gregory Caporaso J.
        • et al.
        Current understanding of the human microbiome.
        Nat Med. 2018; 24: 392-400
        • Mittal R.
        • Coopersmith C.M.
        Redefining the gut as the motor of critical illness.
        Trends Mol Med. 2014; 20: 214-223
        • Sharma K.
        • Mogensen K.M.
        • Robinson M.K.
        Pathophysiology of critical illness and role of nutrition.
        Nutr Clin Pract. 2019; 34: 12-22
        • Van Zanten A.R.H.
        • De Waele E.
        • Wischmeyer P.E.
        Nutrition therapy and critical illness: practical guidance for the icu, post-icu, and long-term convalescence phases.
        Crit Care. 2019; 23https://doi.org/10.1186/s13054-019-2657-5
        • Ralls M.W.
        • Demehri F.R.
        • Feng Y.
        • et al.
        Enteral nutrient deprivation in patients leads to a loss of intestinal epithelial barrier function.
        Surg (United States). 2015; 157: 732-742
        • Buchman A.L.
        • Moukarzel A.A.
        • Bhuta S.
        • et al.
        Parenteral nutrition is associated with intestinal morphologic and functional changes in humans.
        J Parenter Enter Nutr. 1995; 19: 453-460
        • Van Der Hulst R.R.W.J.
        • Von Meyenfeldt M.F.
        • Van Kreel B.K.
        • et al.
        Gut permeability, intestinal morphology, and nutritional depletion.
        Nutrition. 1998; 14: 1-6
        • Zusman O.
        • Theilla M.
        • Cohen J.
        • et al.
        Resting energy expenditure, calorie and protein consumption in critically ill patients: a retrospective cohort study.
        Crit Care. 2016; 20https://doi.org/10.1186/S13054-016-1538-4
        • Harvey S.E.
        • Parrott F.
        • Harrison D.A.
        • et al.
        Trial of the route of early nutritional support in critically Ill adults.
        N Engl J Med. 2014; 371: 1673-1684
        • Singer P.
        • Blaser A.R.
        • Berger M.M.
        • et al.
        ESPEN guideline on clinical nutrition in the intensive care unit.
        Clin Nutr. 2019; 38: 48-79
        • Ohbe H.
        • Jo T.
        • Yamana H.
        • et al.
        Early enteral nutrition for cardiogenic or obstructive shock requiring venoarterial extracorporeal membrane oxygenation: a nationwide inpatient database study.
        Intensive Care Med. 2018; 44: 1258-1265
        • Ohbe H.
        • Jo T.
        • Matsui H.
        • et al.
        Early enteral nutrition in patients with severe traumatic brain injury: a propensity score-matched analysis using a nationwide inpatient database in Japan.
        Am J Clin Nutr. 2020; 111: 378-384https://doi.org/10.1093/ajcn/nqz290
        • Matejovic M.
        • Huet O.
        • Dams K.
        • et al.
        Medical nutrition therapy and clinical outcomes in critically ill adults: a European multinational, prospective observational cohort study (EuroPN).
        Crit Care. 2022; 26: 1-14
        • Reignier J.
        • Boisramé-Helms J.
        • Brisard L.
        • et al.
        Enteral versus parenteral early nutrition in ventilated adults with shock: a randomised, controlled, multicentre, open-label, parallel-group study (NUTRIREA-2).
        Lancet. 2018; 391: 133-143
        • Barash M.
        • Patel J.J.
        Gut luminal and clinical benefits of early enteral nutrition in shock.
        Curr Surg Rep. 2019; 7https://doi.org/10.1007/s40137-019-0243-z
        • Ohbe H.
        • Jo T.
        • Matsui H.
        • et al.
        Differences in effect of early enteral nutrition on mortality among ventilated adults with shock requiring low-, medium-, and high-dose noradrenaline: a propensity-matched analysis.
        Clin Nutr. 2020; 39: 460-467
        • Dorken Gallastegi A.
        • Gebran A.
        • Gaitanidis A.
        • et al.
        Early versus late enteral nutrition in critically ill patients receiving vasopressor support.
        J Parenter Enteral Nutr. 2022; 46: 130-140
        • Heidegger C.P.
        • Berger M.M.
        • Graf S.
        • et al.
        Optimisation of energy provision with supplemental parenteral nutrition in critically ill patients: a randomised controlled clinical trial.
        Lancet. 2013; 381: 385-393
        • Alsharif D.J.
        • Alsharif F.J.
        • Aljuraiban G.S.
        • et al.
        Effect of supplemental parenteral nutrition versus enteral nutrition alone on clinical outcomes in critically ill adult patients: a systematic review and meta-analysis of randomized controlled trials.
        Nutrients. 2020; 12: 2968
        • Lynch S.V.
        • Pedersen O.
        The human intestinal microbiome in health and disease.
        N Engl J Med. 2016; 375: 2369-2379
        • Langille M.G.I.
        • Zaneveld J.
        • Caporaso J.G.
        • et al.
        Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences.
        Nat Biotechnol. 2013; 31: 814-821
        • Nguyen N.P.
        • Warnow T.
        • Pop M.
        • et al.
        A perspective on 16S rRNA operational taxonomic unit clustering using sequence similarity.
        NPJ Biofilms Microbiomes. 2016; 2https://doi.org/10.1038/npjbiofilms.2016.4
        • Donaldson G.P.
        • Lee S.M.
        • Mazmanian S.K.
        Gut biogeography of the bacterial microbiota.
        Nat Rev Microbiol. 2015; 14: 20-32
        • Zmora N.
        • Zilberman-Schapira G.
        • Suez J.
        • et al.
        Personalized gut mucosal colonization resistance to empiric probiotics is associated with unique host and microbiome features.
        Cell. 2018; 174: 1388-1405.e21
        • Huttenhower C.
        • Gevers D.
        • Knight R.
        • et al.
        Structure, function and diversity of the healthy human microbiome.
        Nature. 2012; 486: 207-214
        • Li K.
        • Bihan M.
        • Methé B.A.
        Analyses of the stability and core taxonomic memberships of the human microbiome.
        PLoS One. 2013; 8https://doi.org/10.1371/journal.pone.0063139
        • Krych L.
        • Hansen C.H.F.
        • Hansen A.K.
        • et al.
        Quantitatively different, yet qualitatively alike: a meta-analysis of the mouse core gut microbiome with a view towards the human gut microbiome.
        PLoS One. 2013; 8: e62578
        • Buffie C.G.
        • Pamer E.G.
        Microbiota-mediated colonization resistance against intestinal pathogens.
        Nat Rev Immunol. 2013; 13: 790-801
        • Caballero S.
        • Pamer E.G.
        Microbiota-mediated inflammation and antimicrobial defense in the intestine.
        Annu Rev Immunol. 2015; 33: 227-256
        • Schirmer M.
        • Smeekens S.P.
        • Vlamakis H.
        • et al.
        Linking the human gut microbiome to inflammatory cytokine production capacity.
        Cell. 2016; 167: 1125-1136
        • Ivanov II,
        • Honda K.
        Intestinal commensal microbes as immune modulators.
        Cell Host Microbe. 2012; 12: 496-508
        • Lopetuso L.R.
        • Scaldaferri F.
        • Petito V.
        • et al.
        Commensal clostridia: leading players in the maintenance of gut homeostasis.
        Gut Pathog. 2013; 5: 23
        • Valdes A.M.
        • Walter J.
        • Segal E.
        • et al.
        Role of the gut microbiota in nutrition and health.
        BMJ. 2018; 361: 36-44
        • Lukovic E.
        • Moitra V.K.
        • Freedberg D.E.
        The microbiome: implications for perioperative and critical care.
        Curr Opin Anaesthesiol. 2019; 32: 412-420
        • Fay K.T.
        • Ford M.L.
        • Coopersmith C.M.
        The intestinal microenvironment in sepsis.
        Biochim Biophys Acta - Mol Basis Dis. 2017; 1863: 2574-2583
        • Krezalek M.A.
        • Defazio J.
        • Zaborina O.
        • et al.
        The shift of an intestinal “microbiome” to a “pathobiome” governs the course and outcome of sepsis following surgical injury.
        Shock. 2016; 45: 475
        • Dickson R.P.
        The microbiome and critical illness.
        Lancet Respir Med. 2016; 4: 59-72
        • Alverdy J.C.
        • Hyoju S.K.
        • Weigerinck M.
        • et al.
        The gut microbiome and the mechanism of surgical infection.
        Br J Surg. 2017; 104: e14-e23
        • Deshmukh H.S.
        • Liu Y.
        • Menkiti O.R.
        • et al.
        The microbiota regulates neutrophil homeostasis and host resistance to Escherichia coli K1 sepsis in neonatal mice.
        Nat Med. 2014; 20: 524-530
        • Schuijt T.J.
        • Lankelma J.M.
        • Scicluna B.P.
        • et al.
        The gut microbiota plays a protective role in the host defence against pneumococcal pneumonia.
        Gut. 2016; 65: 575-583
        • Becattini S.
        • Littmann E.R.
        • Carter R.A.
        • et al.
        Commensal microbes provide first line defense against Listeria monocytogenes infection.
        J Exp Med. 2017; 214: 1973-1989
        • Rivera-Chávez F.
        • Zhang L.F.
        • Faber F.
        • et al.
        Depletion of butyrate-producing clostridia from the gut microbiota drives an aerobic luminal expansion of salmonella.
        Cell Host Microbe. 2016; 19: 443-454
        • Fay K.T.
        • Klingensmith N.J.
        • Chen C.W.
        • et al.
        The gut microbiome alters immunophenotype and survival from sepsis.
        FASEB J. 2019; 33: 11258-11269
        • Baümler A.J.
        • Sperandio V.
        Interactions between the microbiota and pathogenic bacteria in the gut.
        Nature. 2016; 535: 85-93
        • Bratzler D.W.
        • Houck P.M.
        • Richards C.
        • et al.
        Use of antimicrobial prophylaxis for major surgery: baseline results from the national surgical infection prevention project.
        Arch Surg. 2005; 140: 174-182
        • Vincent J.L.
        • Rello J.
        • Marshall J.
        • et al.
        International study of the prevalence and outcomes of infection in intensive care units.
        JAMA - J Am Med Assoc. 2009; 302: 2323-2329
        • Lange K.
        • Buerger M.
        • Stallmach A.
        • et al.
        Effects of antibiotics on gut microbiota.
        Dig Dis. 2016; 34: 260-268
        • Becattini S.
        • Taur Y.
        • Pamer E.G.
        Antibiotic-induced changes in the intestinal microbiota and disease.
        Trends Mol Med. 2016; 22: 458-478
        • Palleja A.
        • Mikkelsen K.H.
        • Forslund S.K.
        • et al.
        Recovery of gut microbiota of healthy adults following antibiotic exposure.
        Nat Microbiol. 2018; 3: 1255-1265
        • Dethlefsen L.
        • Relman D.A.
        Incomplete recovery and individualized responses of the human distal gut microbiota to repeated antibiotic perturbation.
        Proc Natl Acad Sci. 2011; 108: 4554-4561
        • Buffie C.G.
        • Jarchum I.
        • Equinda M.
        • et al.
        Profound alterations of intestinal microbiota following a single dose of clindamycin results in sustained susceptibility to clostridium difficile-induced colitis.
        Infect Immun. 2012; 80: 62
        • Kennedy E.A.
        • King K.Y.
        • Baldridge M.T.
        Mouse microbiota models: comparing germ-free mice and antibiotics treatment as tools for modifying gut bacteria.
        Front Physiol. 2018; 9: 1534
        • Serbanescu M.A.
        • Mathena R.P.
        • Xu J.
        • et al.
        General anesthesia alters the diversity and composition of the intestinal microbiota in mice.
        Anesth Analg. 2018; 1https://doi.org/10.1213/ane.0000000000003938
        • Ashley S.L.
        • Sjoding M.W.
        • Popova A.P.
        • et al.
        Lung and gut microbiota are altered by hyperoxia and contribute to oxygen-induced lung injury in mice.
        Sci Transl Med. 2020; 12https://doi.org/10.1126/SCITRANSLMED.AAU9959
        • Freedberg D.E.
        • Toussaint N.C.
        • Chen S.P.
        • et al.
        Proton pump inhibitors alter specific taxa in the human gastrointestinal microbiome: a crossover trial.
        Gastroenterology. 2015; 149: 883-885.e9
        • Wang F.
        • Meng J.
        • Zhang L.
        • et al.
        Morphine induces changes in the gut microbiome and metabolome in a morphine dependence model.
        Sci Rep. 2018; 8: 1-15
        • Banerjee S.
        • Sindberg G.
        • Wang F.
        • et al.
        Opioid-induced gut microbial disruption and bile dysregulation leads to gut barrier compromise and sustained systemic inflammation.
        Mucosal Immunol Author Manuscr Mucosal Immunol. 2016; 99: 1418-1428
        • McDonald D.
        • Ackermann G.
        • Khailova L.
        • et al.
        Extreme dysbiosis of the microbiome in critical illness.
        mSphere. 2016; 1: 199-215
        • Freedberg D.E.
        • Zhou M.J.
        • Cohen M.E.
        • et al.
        Pathogen colonization of the gastrointestinal microbiome at intensive care unit admission and risk for subsequent death or infection.
        Intensive Care Med. 2018; 44: 1203-1211
        • Livanos A.E.
        • Snider E.J.
        • Whittier S.
        • et al.
        Rapid gastrointestinal loss of Clostridial Clusters IV and XIVa in the ICU associates with an expansion of gut pathogens.
        PLoS One. 2018; 13: e0200322
        • Lankelma J.M.
        • van Vught L.A.
        • Belzer C.
        • et al.
        Critically ill patients demonstrate large interpersonal variation in intestinal microbiota dysregulation: a pilot study.
        Intensive Care Med. 2017; 43: 59-68
        • Jacobs M.C.
        • Lankelma J.M.
        • Wolff N.S.
        • et al.
        Effect of antibiotic gut microbiota disruption on LPS-induced acute lung inflammation.
        PLoS One. 2020; 15: e0241748
        • Yamada T.
        • Shimizu K.
        • Ogura H.
        • et al.
        Rapid and sustained long-term decrease of fecal short-chain fatty acids in critically ill patients with systemic inflammatory response syndrome.
        J Parenter Enter Nutr. 2015; 39: 569-577
        • Valdés-Duque B.E.
        • Giraldo-Giraldo N.A.
        • Jaillier-Ramírez A.M.
        • et al.
        Stool short-chain fatty acids in critically ill patients with sepsis.
        J Am Coll Nutr. 2020; 39: 706-712
        • Ravi A.
        • Halstead F.D.
        • Bamford A.
        • et al.
        Loss of microbial diversity and pathogen domination of the gut microbiota in critically ill patients.
        Microb Genomics. 2019; 5https://doi.org/10.1099/MGEN.0.000293
        • Zaborin A.
        • Smith D.
        • Garfield K.
        • et al.
        Membership and behavior of ultra-low-diversity pathogen communities present in the gut of humans during prolonged critical illness.
        MBio. 2014; 5
        • Agudelo-Ochoa G.M.
        • Valdés-Duque B.E.
        • Giraldo-Giraldo N.A.
        • et al.
        Gut microbiota profiles in critically ill patients, potential biomarkers and risk variables for sepsis.
        Gut Microbes. 2020; 12https://doi.org/10.1080/19490976.2019.1707610
        • Earley Z.M.
        • Akhtar S.
        • Green S.J.
        • et al.
        Burn injury alters the intestinal microbiome and increases gut permeability and bacterial translocation.
        PLoS One. 2015; 10https://doi.org/10.1371/journal.pone.0129996
        • Howard B.M.
        • Kornblith L.Z.
        • Christie S.A.
        • et al.
        Characterizing the gut microbiome in trauma: significant changes in microbial diversity occur early after severe injury.
        Trauma Surg Acute Care Open. 2017; 2https://doi.org/10.1136/tsaco-2017-000108
        • Cong J.
        • Zhu H.
        • Liu D.
        • et al.
        A pilot study: changes of gut microbiota in post-surgery colorectal cancer patients.
        Front Microbiol. 2018; 9https://doi.org/10.3389/fmicb.2018.02777
        • Tourelle K.M.
        • Boutin S.
        • Weigand M.A.
        • et al.
        Sepsis and the human microbiome. Just another kind of organ failure? a review.
        J Clin Med. 2021; 10: 4831
        • Fair K.
        • Dunlap D.G.
        • Fitch A.
        • et al.
        Rectal swabs from critically ill patients provide discordant representations of the gut microbiome compared to stool samples.
        mSphere. 2019; 4
        • Fontaine C.
        • Armand-Lefèvre L.
        • Magnan M.
        • et al.
        Relationship between the composition of the intestinal microbiota and the tracheal and intestinal colonization by opportunistic pathogens in intensive care patients.
        PLoS One. 2020; 15https://doi.org/10.1371/journal.pone.0237260
        • Prescott H.C.
        • Dickson R.P.
        • Rogers M.A.M.
        • et al.
        Hospitalization type and subsequent severe sepsis.
        Am J Respir Crit Care Med. 2015; 192: 581-588
        • Taur Y.
        • Xavier J.B.
        • Lipuma L.
        • et al.
        Intestinal domination and the risk of bacteremia in patients undergoing allogeneic hematopoietic stem cell transplantation.
        Clin Infect Dis. 2012; 55: 905-914
        • Tamburini F.B.
        • Andermann T.M.
        • Tkachenko E.
        • et al.
        Precision identification of diverse bloodstream pathogens in the gut microbiome.
        Nat Med. 2018; 24: 1809-1814
        • Ralls M.W.
        • Miyasaka E.
        • Teitelbaum D.H.
        Intestinal microbial diversity and perioperative complications.
        J Parenter Enter Nutr. 2014; 38: 392-399
        • Schmitt F.C.F.
        • Brenner T.
        • Uhle F.
        • et al.
        Gut microbiome patterns correlate with higher postoperative complication rates after pancreatic surgery.
        BMC Microbiol. 2019; 19: 42
        • Van Praagh J.B.
        • De Goffau M.C.
        • Bakker I.S.
        • et al.
        Mucus microbiome of anastomotic tissue during surgery has predictive value for colorectal anastomotic leakage.
        Ann Surg. 2019; 269: 911-916
        • Zmora N.
        • Suez J.
        • Elinav E.
        You are what you eat: diet, health and the gut microbiota.
        Nat Rev Gastroenterol Hepatol. 2019; 16: 35-56
        • Luthold R.V.
        • Fernandes G.R.
        • Franco-de-Moraes A.C.
        • et al.
        Gut microbiota interactions with the immunomodulatory role of vitamin D in normal individuals.
        Metabolism. 2017; 69: 76-86
        • Rinninella E.
        • Raoul P.
        • Cintoni M.
        • et al.
        What is the healthy gut microbiota composition? A changing ecosystem across age, environment, diet, and diseases.
        Microorganisms. 2019; 7: 14
        • Wan X.
        • Bi J.
        • Gao X.
        • et al.
        Partial enteral nutrition preserves elements of gut barrier function, including innate immunity, intestinal alkaline phosphatase (IAP) level, and intestinal microbiota in mice.
        Nutrients. 2015; 7: 6294-6312
        • Lucchinetti E.
        • Lou P.H.
        • Lemal P.
        • et al.
        Gut microbiome and circulating bacterial DNA (“blood microbiome”) in a mouse model of total parenteral nutrition: Evidence of two distinct separate microbiotic compartments.
        Clin Nutr ESPEN. 2022; 49: 278-288
        • Jirsova Z.
        • Heczkova M.
        • Dankova H.
        • et al.
        The effect of butyrate-supplemented parenteral nutrition on intestinal defence mechanisms and the parenteral nutrition-induced shift in the gut microbiota in the rat model.
        Biomed Res Int. 2019; 2019https://doi.org/10.1155/2019/7084734
        • Venegas-Borsellino C.
        • Kwon M.
        Impact of soluble fiber in the microbiome and outcomes in critically ill patients.
        Curr Nutr Rep. 2019; 8: 347-355
        • Holscher H.D.
        Dietary fiber and prebiotics and the gastrointestinal microbiota Dietary fiber and prebiotics and the gastrointestinal microbiota.
        Gut Microbes. 2017; 8: 172-184
        • Fu Y.
        • Moscoso D.I.
        • Porter J.
        • et al.
        Relationship between dietary fiber intake and short-chain fatty acid–producing bacteria during critical illness: a prospective cohort study.
        J Parenter Enter Nutr. 2020; 44: 463-471
        • Liu T.
        • Wang C.
        • Wang Y.
        • et al.
        Effect of dietary fiber on gut barrier function, gut microbiota, short-chain fatty acids, inflammation, and clinical outcomes in critically ill patients: a systematic review and meta-analysis.
        J Parenter Enter Nutr. 2022; https://doi.org/10.1002/JPEN.2319
        • Eleftheriadis K.
        • Davies R.
        Do patients fed enterally post–gastrointestinal surgery experience more complications when fed a fiber-enriched feed compared with a standard feed? A systematic review.
        Nutr Clin Pract. 2021; https://doi.org/10.1002/NCP.10805
        • Davison J.M.
        • Wischmeyer P.E.
        Probiotic and synbiotic therapy in the critically ill: state of the art.
        Nutrition. 2019; 59: 29-36
        • Zeng W.
        • Shen J.
        • Bo T.
        • et al.
        Cutting edge: probiotics and fecal microbiota transplantation in immunomodulation.
        J Immunol Res. 2019; 2019https://doi.org/10.1155/2019/1603758
        • McFarland L.V.
        Use of probiotics to correct dysbiosis of normal microbiota following disease or disruptive events: a systematic review.
        BMJ Open. 2014; 4https://doi.org/10.1136/bmjopen-2014-005047
        • Hayashi A.
        • Sato T.
        • Kamada N.
        • et al.
        A single strain of clostridium butyricum induces intestinal IL-10-producing macrophages to suppress acute experimental colitis in mice.
        Cell Host Microbe. 2013; 13: 711-722
        • Kanai T.
        • Mikami Y.
        • Atsushi Hayashi •
        A breakthrough in probiotics: clostridium butyricum regulates gut homeostasis and anti-inflammatory response in inflammatory bowel disease.
        J Gastroenterol. 2015; 50https://doi.org/10.1007/s00535-015-1084-x
        • Ochi T.
        • Feng Y.
        • Kitamoto S.
        • et al.
        Diet-dependent, microbiota-independent regulation of IL-10-producing lamina propria macrophages in the small intestine.
        Sci Rep. 2016; 6: 1-12
        • Manzanares W.
        • Lemieux M.
        • Langlois P.L.
        • et al.
        Probiotic and synbiotic therapy in critical illness: a systematic review and meta-analysis.
        Crit Care. 2016; 20https://doi.org/10.1186/s13054-016-1434-y
        • Johnstone J.
        • Meade M.
        • Lauzier F.
        • et al.
        Effect of probiotics on incident ventilator-associated pneumonia in critically ill patients: a randomized clinical trial.
        JAMA. 2021; 326: 1024-1033
        • Bassetti M.
        • Bandera A.
        • Gori A.
        Therapeutic Potential of the Gut Microbiota in the Management of Sepsis.
        Crit Care. 2020; 24https://doi.org/10.1186/s13054-020-2780-3
        • Chowdhury A.H.
        • Adiamah A.
        • Kushairi A.
        • et al.
        Perioperative probiotics or synbiotics in adults undergoing elective abdominal surgery: A systematic review and meta-analysis of randomized controlled trials.
        Ann Surg. 2020; 271: 1036-1047
        • Polakowski C.B.
        • Kato M.
        • Preti V.B.
        • et al.
        Impact of the preoperative use of synbiotics in colorectal cancer patients: a prospective, randomized, double-blind, placebo-controlled study.
        Nutrition. 2019; 58: 40-46
        • Martins Sommacal H.
        • Pierri Bersch V.
        • Pascoal Vitola S.
        • et al.
        Perioperative synbiotics decrease postoperative complications in periampullary neoplasms: a randomized, double-blind clinical trial.
        Nutr Cancer. 2015; 67: 457-462
        • Besselink M.G.
        • van Santvoort H.C.
        • Buskens E.
        • et al.
        Probiotic prophylaxis in predicted severe acute pancreatitis: a randomised, double-blind, placebo-controlled trial.
        Lancet (London, England). 2008; 371: 651-659
        • Yu C.
        • Zhang Y.
        • Yang Q.
        • et al.
        An updated systematic review with meta-analysis: efficacy of prebiotic, probiotic, and synbiotic treatment of patients with severe acute pancreatitis.
        Pancreas. 2021; 50: 160-166
        • Gou S.
        • Yang Z.
        • Liu T.
        • et al.
        Use of probiotics in the treatment of severe acute pancreatitis: a systematic review and meta-analysis of randomized controlled trials.
        Crit Care. 2014; 18: 1-10
        • Lolis N.
        • Veldekis D.
        • Moraitou H.
        • et al.
        Saccharomyces boulardii fungaemia in an intensive care unit patient treated with caspofungin.
        Crit Care. 2008; 12: 414
        • Sherid M.
        • Samo S.
        • Sulaiman S.
        • et al.
        Liver abscess and bacteremia caused by lactobacillus: role of probiotics? Case report and review of the literature.
        BMC Gastroenterol. 2016; 16https://doi.org/10.1186/s12876-016-0552-y
        • Suez J.
        • Zmora N.
        • Zilberman-Schapira G.
        • et al.
        Post-antibiotic gut mucosal microbiome reconstitution is impaired by probiotics and improved by autologous FMT.
        Cell. 2018; 174: 1406-1423.e16
        • Hocquart M.
        • Lagier J.C.
        • Cassir N.
        • et al.
        Early fecal microbiota transplantation improves survival in severe clostridium difficile infections.
        Clin Infect Dis. 2018; 66: 645-650
        • Choi H.H.
        • Cho Y.S.
        Fecal microbiota transplantation: current applications, effectiveness, and future perspectives.
        Clin Endosc. 2016; 49: 257-265
        • Alagna L.
        • Haak B.W.
        • Gori A.
        Fecal microbiota transplantation in the ICU: perspectives on future implementations.
        Intensive Care Med. 2019; 45: 998-1001