Advertisement
Review Article| Volume 41, ISSUE 1, P211-230, March 2023

Acute Kidney Injury and Renal Replacement Therapy

A Review and Update for the Perioperative Physician

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribers receive full online access to your subscription and archive of back issues up to and including 2002.

      Content published before 2002 is available via pay-per-view purchase only.

      Subscribe:

      Subscribe to Anesthesiology Clinics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Meersch M.
        • Schmidt C.
        • Zarbock A.
        Perioperative acute kidney injury: an under-recognized problem.
        Anesth Analg. 2017; 125: 1223-1232
        • Uchino S.
        • Kellum J.A.
        • Bellomo R.
        • et al.
        Acute renal failure in critically ill patients: a multinational, multicenter study.
        JAMA. 2005; 294: 813-818
        • Ricci Z.
        • Cruz D.
        • Ronco C.
        The rifle criteria and mortality in acute kidney injury: a systematic review.
        Kidney Int. 2008; 73: 538-546
        • Zarbock A.
        • Koyner J.L.
        • Hoste E.A.J.
        • et al.
        Update on perioperative acute kidney injury.
        Anesth Analg. 2018; 127: 1236-1245
        • Wallace M.A.
        Anatomy and physiology of the kidney.
        AORN J. 1998; 68: 799-820
        • Dalal R.
        • Bruss Z.S.
        • Sehdev J.S.
        Physiology, renal blood flow and filtration. [Updated 2021 Jul 26]. In: StatPearls [Internet].
        StatPearls Publishing, Treasure Island (FL)2022 (Available from:)
        • Pakula A.M.
        • Skinner R.A.
        Acute kidney injury in the critically ill patient: a current review of literature.
        J Intensive Care Med. 2016; 31: 319-324
        • Bellomo R.
        • Ronco C.
        • Kellum J.A.
        • et al.
        Acute renal failure- definition, outcome measures, animal models, fluid therapy and information technology needs: the second international consensus conference of the acute dialysis quality initiative (ADQI) group.
        Crit Care. 2004; 8: R204-R212
        • Mehta R.L.
        • Kellum J.A.
        • Shah S.V.
        • et al.
        Acute kidney injury network: report of an initiative to improve outcomes in acute kidney injury.
        Crit Care. 2007; 11: R31
        • Bagshaw S.M.
        • George C.
        • Dinu I.
        • et al.
        A multi-centre evaluation of the rifle criteria for early acute kidney injury in critically ill patients.
        Nephrol Dial Transpl. 2008; 23: 1203-1210
        • Lassnigg A.
        • Schmidlin D.
        • Mouhieddine M.
        • et al.
        Minimal changes of serum creatinine predict prognosis in patients after cardiothoracic surgery: a prospective cohort study.
        J Am Soc Nephrol. 2004; 15: 1597-1605
      1. Kidney disease: improving global outcomes (KDIGO) acute kidney injury work group: KDIGO clinical practice guideline for acute kidney injury.
        Kidney Int. 2012; 21: 138
        • Kellum J.A.
        • Lameire N.
        • for the KDIGO AKI Guideline Work Group
        Diagnosis, evaluation, and management of acute kidney injury: a KDIGO summary (Part 1).
        Crit Care. 2013; 17: 204
        • Fuji T.
        • Uchino S.
        • Takinami M.
        • et al.
        Validation of the kidney disease improving global outcomes criteria for AKI and comparison of three criteria in hospitalized patients.
        Clin J Am Soc Nephrol. 2014; 9: 848-854
        • Schetz M.
        • Schortgen F.
        Ten shortcomings of the current definition of AKI.
        Intensive Care Med. 2017; 43: 911-913
        • Moore P.K.
        • Hsu R.K.
        • Liu K.D.
        Management of acute kidney injury: core curriculum 2018.
        Am J Kidney Dis. 2018; 72: 136-148
        • Kwiatkowska E.
        • Domański L.
        • Dziedziejko V.
        • et al.
        The Mechanism of Drug Nephrotoxicity and the Methods for Preventing Kidney Damage.
        Int J Mol Sci. 2021; 22: 6109
        • Ojo B.
        • Campbell C.H.
        Perioperative Acute Kidney Injury: Impact and Recent Update.
        Curr Opin Anaesthesiol. 2022; 35: 215-223
        • Gumbert S.D.
        • Kork F.
        • Jackson M.L.
        • et al.
        Perioperative Acute Kidney Injury.
        Anesthesiology. 2020; 132: 180-204
        • Goren O.
        • Matot I.
        Perioperative acute kidney injury.
        Br J Anaesth. 2015; 115: ii3-ii14
        • Cole S.P.
        Stratification and Risk Reduction of Perioperative Acute Kidney Injury: An Update.
        Anesthesiol Clin. 2018; 36: 539-551
        • Morales-Alvarez M.C.
        Nephrotoxicity of Antimicrobials and Antibiotics.
        Adv Chronic Kidney Dis. 2020; 27: 31-37
        • Lodise T.P.
        • Patel N.
        • Lomaestro B.M.
        • et al.
        Relationship between Initial Vancomycin Concentration Time Profile and Nephrotoxicity among Hospitalized Patients.
        Clin Infect Dis. 2009; 49: 507-514
        • Lin S.Y.
        • Tang S.C.
        • Tsai L.K.
        • et al.
        Incidence and Risk Factors for Acute Kidney Injury Following Mannitol Infusion in Patients With Acute Stroke: A Retrospective Cohort Study.
        Medicine (Baltimore). 2015; 94: e2032
        • Chen J.J.
        • Kuo G.
        • Hung C.C.
        • et al.
        Risk factors and Prognosis Assessment for Acute Kidney Injury: The 2020 Consensus of the Taiwan AKI Task Force.
        J Formos Med Assoc. 2021; 120: 1424-1433
        • Kobayashi Y.
        • Yamaoka K.
        Analysis of Intraoperative Modifiable Factors to Prevent Acute Kidney Injury After Elective Noncardiac Surgery: Intraoperative Hypotension and Crystalloid Administration Related to Acute Kidney Injury.
        JA Clin Rep. 2021; 7: 27
        • Matot I.
        • Dery E.
        • Bulgov Y.
        • et al.
        Fluid Management During Video-assisted Thoracoscopic Surgery for Lung Resection: A Randomized, Controlled Trial of Effects on Urinary Output and Postoperative Renal Function.
        J Thorac Cardiovasc Surg. 2013; 146: 461-466
        • Matot I.
        • Paskaleva R.
        • Eid L.
        • et al.
        Effect of the Volume of Fluids Administered on Intraoperative Oliguria in Laparoscopic Bariatric Surgery: A Randomized Controlled Trial.
        Arch Surg. 2012; 147: 228-234
        • McWilliam S.J.
        • Antoine D.J.
        • Smyth R.L.
        • et al.
        Aminoglycoside-induced Nephrotoxicity in Children.
        Pediatr Nephrol. 2017; 32: 2015-2025
        • Burgess L.D.
        • Drew R.H.
        Comparison of the Incidence of Vancomycin-induced Nephrotoxicity in Hospitalized Patients with and without Concomitant Piperacillin-Tazobactam.
        Pharmacotherapy. 2014; 34: 670-676
        • Brienza N.
        • Giglio M.T.
        • Marucci M.
        • et al.
        Does Perioperative Hemodynamic Optimization Protect Renal Function in Surgical Patients? A Meta-analytic Study.
        Crit Care Med. 2009; 37: 2079-2090
        • Sun L.Y.
        • Wijeysundera D.N.
        • Tait G.A.
        • et al.
        Association of Intraoperative Hypotension with Acute Kidney Injury after Elective Noncardiac Surgery.
        Anesthesiology. 2015; 123: 515-523
        • Mathis M.R.
        • Naik B.I.
        • Freundlich R.E.
        • et al.
        Preoperative Risk and the Association Between Hypotension and Postoperative Acute Kidney Injury.
        Anesthesiology. 2020; 132: 461-475
        • Walsh M.
        • Devereaux P.J.
        • Garg A.X.
        • et al.
        Relationship Between Intraoperative Mean Arterial Pressure and Clinical Outcomes after Noncardiac Surgery: Toward an Empirical Definition of Hypotension.
        Anesthesiology. 2013; 119: 507-515
        • Ahuja S.
        • Mascha E.J.
        • Yang D.
        • et al.
        Associations of Intraoperative Radial Arterial Systolic, Diastolic, Mean, and Pulse Pressures with Myocardial and Acute Kidney Injury after Noncardiac Surgery: A Retrospective Cohort Analysis.
        Anesthesiology. 2020; 132: 291-306
        • Nie S.
        • Tang L.
        • Zhang W.
        • et al.
        Are There Modifiable Risk Factors to Improve AKI?.
        Biomed Res Int. 2017; 2017: 5605634
        • Ishani A.
        • Xue J.L.
        • Himmelfarb J.
        • et al.
        Acute Kidney Injury Increases Risk of ESRD Among Elderly.
        J Am Soc Nephrol. 2009; 20: 223e8
        • Coca S.G.
        • Singanamala S.
        • Parikh C.R.
        Chronic Kidney Disease after Acute Kidney Injury: a Systematic Review and Meta-analysis.
        Kidney Int. 2012; 81: 442e8
        • Sawhney S.
        • Mitchell M.
        • Marks A.
        • et al.
        Long-term Prognosis after Acute Kidney Injury (AKI): What is the Role of Baseline Kidney Function and Recovery? A Systematic Review.
        BMJ Open. 2015; 5: e006497
        • Bucaloiu I.D.
        • Kirchner H.L.
        • Norfolk E.R.
        • et al.
        Increased Risk of Death and de novo Chronic Kidney Disease Following Reversible Acute Kidney Injury.
        Kidney Int. 2012; 81: 477e85
        • Gautam S.C.
        • Brooks C.H.
        • Balogun R.A.
        • et al.
        Predictors and Outcomes of Post-Hospitalization Dialysis Dependent Acute Kidney Injury.
        Nephron. 2015; 131: 185e90
        • Berkowitz R.J.
        • Engoren M.C.
        • Mentz G.
        • et al.
        Intraoperative Risk Factors of Acute Kidney Injury after Liver Transplantation.
        Liver Transpl. 2022; 28: 1207-1223
        • Wajda-Pokrontka M.
        • Nadziakiewicz P.
        • Krauchuk A.
        • et al.
        Incidence and Perioperative Risk Factors of Acute Kidney Injury Among Lung Transplant Recipients.
        Transpl Proc. 2022; 54 ([published online ahead of print, 2022 Apr 11]): 1120-1123
        • Ortega-Loubon C.
        • Fernández-Molina M.
        • Carrascal-Hinojal Y.
        • et al.
        Cardiac surgery-associated acute kidney injury.
        Ann Card Anaesth. 2016; 19: 687-698
        • Chawla L.S.
        • Zhao Y.
        • Lough F.C.
        • et al.
        Off-pump versus On-pump Coronary Artery Bypass Grafting Outcomes Stratified by Preoperative Renal Function.
        J Am Soc Nephrol. 2012; 23: 1389-1397
        • Shroyer A.L.
        • Grover F.L.
        • Hattler B.
        • et al.
        On-pump versus Off-pump Coronary-Artery Bypass Surgery.
        N Engl J Med. 2009; 361: 1827-1837
        • Yang B.
        • Fung A.
        • Pac-Soo C.
        • et al.
        Vascular Surgery-related Organ Injury and Protective Strategies: Update and Future Prospects.
        Br J Anaesth. 2016; 117: ii32-ii43
        • Gamulin Z.
        • Forster A.
        • Morel D.
        • et al.
        Effects of Infrarenal Aortic Cross-clamping on Renal Hemodynamics in Humans.
        Anesthesiology. 1984; 61: 394-399
        • Hu L.
        • Gao L.
        • Zhang D.
        • et al.
        The incidence, risk factors and outcomes of acute kidney injury in critically ill patients undergoing emergency surgery: a prospective observational study.
        BMC Nephrol. 2022; 23: 42
        • Liesenfeld L.F.
        • Wagner B.
        • Hillebrecht H.C.
        • et al.
        HIPEC-Induced Acute Kidney Injury: A Retrospective Clinical Study and Preclinical Model.
        Ann Surg Oncol. 2022; 29: 139-151
        • Hakeam H.A.
        • Breakiet M.
        • ett al Azzam A.
        The Incidence of Cisplatin Nephrotoxicity Post-Hyperthermic Intraperitoneal Chemotherapy (HIPEC) and Cytoreductive Surgery.
        Ren Fail. 2014; 36: 1486-1491
        • Koyner J.L.
        • Davison D.L.
        • Brasha-Mitchell E.
        • et al.
        Furosemide Stress Test and Biomarkers for the Prediction of AKI Severity.
        J Am Soc Nephrol. 2015; 26: 2023-2031
        • Chawla L.S.
        • Davison D.L.
        • Brasha-Mitchell E.
        • et al.
        Development and Standardization of a Furosemide Stress Test to Predict the Severity of Acute Kidney Injury.
        Crit Care. 2013; 17: R207
        • Chen J.J.
        • Chang C.H.
        • Huang Y.T.
        • et al.
        Furosemide Stress Test as a Predictive Marker of Acute Kidney Injury Progression or Renal Replacement Therapy: A Systemic Review and Meta-analysis.
        Crit Care. 2020; 24: 202
        • Wei C.
        • Zhang L.
        • Feng Y.
        • et al.
        Machine Learning Model for Predicting Acute Kidney injury Progression in Critically Ill Patients.
        BMC Med Inform Decis Mak. 2022; 22: 17
        • Grocott M.P.W.
        • Mythen M.G.
        • Gan T.J.
        Perioperative Fluid Management and Clinical Outcomes in Adults.
        Anesth Analg. 2005; 100: 1093-1106
        • Joannidis M.
        • Druml W.
        • Forni L.G.
        • et al.
        Prevention of Acute Kidney Injury and Protection of Renal Function in the Intensive Care Unit: Update 2017: Expert Opinion of the Working Group on Prevention, AKI section, European Society of Intensive Care Medicine.
        Intensive Care Med. 2017; 43: 730-749
        • Sato R.
        • Luthe S.K.
        • Nasu M.
        Blood Pressure and Acute Kidney Injury.
        Crit Care. 2017; 21: 28
        • Saito S.
        • Uchino S.
        • Takinami M.
        • et al.
        Postoperative Blood Pressure Deficit and Acute Kidney Injury Progression in Vasopressor-dependent Cardiovascular Surgery Patients.
        Crit Care. 2016; 20: 74
        • Legrand M.
        • Dupuis C.
        • Simon C.
        • et al.
        Association Between Systemic Hemodynamics and Septic Acute Kidney Injury in Critically Ill Patients: A Retrospective Observational Study.
        Crit Care. 2013; 17: R278
        • Wong B.T.
        • Chan M.J.
        • Glassford N.J.
        • et al.
        Mean Arterial Pressure and Mean Perfusion Pressure Deficit in Septic Acute Kidney Injury.
        J Crit Care. 2015; 30: 975-981
        • Chowdhury A.H.
        • Cox E.F.
        • Francis S.T.
        • et al.
        A Randomized, Controlled, Double-blind Crossover Study on the Effects of 2-L Infusions of 0.9% Saline and Plasma-lyte 148 on Renal Blood Flow Velocity and Renal Cortical Tissue Perfusion in Healthy Volunteers.
        Ann Surg. 2012; 256: 18-24
        • Nadeem A.
        • Salahuddin N.
        • El Hazmi A.
        • et al.
        Chloride-liberal Fluids are Associated with Acute Kidney Injury after Liver Transplantation.
        Crit Care. 2014; 18: 625
        • Annane D.
        • Siami S.
        • Jaber S.
        • et al.
        Effects of Fluid Resuscitation with Colloids vs. Crystalloids on Mortality in Critically Ill Patients Presenting with Hypovolemic Shock.
        JAMA. 2013; 310: 1809-1817
        • Finfer S.
        • Bellomo R.
        • Boyce N.
        • et al.
        A Comparison of Albumin and Saline for Fluid Resuscitation in the Intensive Care Unit.
        N Engl J Med. 2004; 350: 2247-2256
        • Myburgh J.A.
        • Finfer S.
        • Bellomo R.
        • et al.
        Hydroxyethyl Starch or Saline for Fluid Resuscitation in Intensive Care.
        N Engl J Med. 2012; 367: 1901-1911
        • Perner A.
        • Haase N.
        • Guttormsen A.B.
        • et al.
        Hydroxyethyl Starch 130/0.42 versus Ringer’s acetate in Severe Sepsis.
        N Engl J Med. 2012; 367: 124-134
        • Gattas D.J.
        • Dan A.
        • Myburgh J.
        • et al.
        Fluid Resuscitation with 6% Hydroxyethyl Starch (130/0.4 and 130/0.42) in acutely ill patients: systematic review of effects on mortality and treatment with renal replacement therapy.
        Intensive Care Med. 2013; 39: 558-568
        • Beyer R.
        • Harmening U.
        • Rittmeyer O.
        • et al.
        Use of modified fluid gelatin and hydroxyethyl starch for colloidal volume replacement in major orthopaedic surgery.
        Br J Anaesth. 1997; 78: 44-50
        • Schortgen F.
        • Lacherade J.C.
        • Bruneel F.
        • et al.
        Effects of Hydroxyethylstarch and gelatin on Renal Function in Severe Sepsis: A Multicentre Randomised Study.
        Lancet. 2001; 357: 911-916
        • Mardel S.N.
        • Saunders F.M.
        • Allen H.
        • et al.
        Reduced Quality of Clot Formation with Gelatin-based Plasma Substitutes.
        Br J Anaesth. 1998; 80: 204-207
        • Kurnik B.R.
        • Singer F.
        • Groh W.C.
        Case report: dextran-induced acute anuric renal failure.
        Am J Med Sci. 1991; 302: 28-30
        • Laxenaire M.C.
        • Charpentier C.
        • Feldman L.
        Anaphylactoid Reactions to Colloid Plasma Substitutes: Incidence, Risk Factors, Mechanisms. A French Multicenter Prospective Study.
        Ann Fr Anesth Reanim. 1994; 13: 301-310
        • Walsh M.
        • Garg A.X.
        • Devereaux P.J.
        • et al.
        The Association Between Perioperative Hemoglobin and Acute Kidney Injury in Patients Having Noncardiac Surgery.
        Anesth Analg. 2013; 117: 924-931
        • Eng J.
        • Wilson R.F.
        • Subramaniam R.M.
        • et al.
        Comparative Effect of contrast media type on the incidence of contrast-induced nephropathy: a systematic review and meta-analysis.
        Ann Intern Med. 2016; 164: 417-424
        • Fähling M.
        • Seelinger E.
        • Patzak A.
        • et al.
        Understanding and Preventing Contrast-induced Acute Kidney Injury.
        Nat Rev Nephrol. 2017; 13: 169-180
        • Liss P.
        • Persson P.B.
        • Hansell P.
        • et al.
        Renal Failure in 57,925 Patients Undergoing Coronary Procedures Using Iso-osmolar or low-osmolar Contrast Media.
        Kidney Int. 2006; 70: 1811-1817
        • Persson P.B.
        • Hansell P.
        • Liss P.
        Pathophysiology of Contrast Medium-induced Nephropathy.
        Kidney Int. 2005; 68: 14-22
        • Waheed S.
        • Choi M.J.
        Trials and Tribulations of Diagnosing and Preventing Contrast-induced Acute Kidney Injury.
        J Thorac Cardiovasc Surg. 2021; 162: 1581-1586
        • Bellomo R.
        • Kellum J.A.
        • Ronco C.
        Acute Kidney Injury.
        Lancet. 2012; 380: 756-766
        • Bagshaw S.M.
        • McAlister F.A.
        • Manns B.J.
        • et al.
        Acetylcysteine in the Prevention of Contrast-Induced Nephropathy: A case study of the pitfalls in the evolution of evidence.
        Arch Intern Med. 2006; 166: 161-166
        • Brar S.S.
        • Shen A.Y.
        • Jorgensen M.B.
        • et al.
        Sodium Bicarbonate vs Sodium Chloride for the Prevention of Contrast Medium-Induced Nephropathy in Patients Undergoing Coronary Angiography: A Randomized Trial.
        JAMA. 2008; 300: 1038-1046
        • Lauschke A.
        • Teichgraber U.K.M.
        • Frei U.
        • et al.
        ‘Low dose’ Dopamine Worsens Renal Perfusion in Patients with Acute Renal Failure.
        Kidney Int. 2006; 69: 1669-1674
        • Friedrich J.O.
        • Adhikari N.
        • Herridge M.S.
        • et al.
        Meta-analysis: Low-dose Dopamine Increases Urine Output but Does Not Prevent Renal Dysfunction or Death.
        Ann Intern Med. 2005; 142: 510-524
        • Holmes C.L.
        • Walley K.R.
        Bad Medicine: Low-Dose Dopamine in the ICU.
        Chest. 2003; 123: 1266-1275
        • Landoni G.
        • Biondi-Zoccai G.G.
        • Frati E.
        • et al.
        Beneficial Impact of Fenoldopam in Critically Ill Patients with or at Risk for Acute Renal Failure: A Meta-analysis of Randomized Clinical Trials.
        Am J Kidney Dis. 2007; 49: 56-68
        • Ranucci M.
        • De Benedetti D.
        • Bianchini C.
        • et al.
        Effects of Fenoldopam Infusion in Complex Cardiac Surgical Operations: A Prospective, Randomized, Double-blind placebo-Controlled Study.
        Minerva Anestesiol. 2010; 76: 249-259
        • Zangrillo A.
        • Biondi-Zoccai G.G.
        • Frati E.
        • et al.
        Fenoldopam and Acute Renal Failure in Cardiac Surgery: A Meta-analysis of Randomized Placebo-controlled Trials.
        J Cardiothorac Vasc Anesth. 2012; 26: 407-413
        • Bove T.
        • Zangrillo A.
        • Guarracino F.
        • et al.
        Effect of Fenoldopam on Use of Renal Replacement Therapy Among Patients With Acute Kidney Injury After Cardiac Surgery: A Randomized Trial.
        JAMA. 2014; 312: 2244-2254
        • Bragadottir G.
        • Redfors B.
        • Ricksten S.E.
        Effects of Levosimendan on Glomerular Filtration Rate, Renal Blood Flow and Renal Oxygenation after Cardiac Surgery with Cardiopulmonary Bypass: A Randomized Placebo-controlled Study.
        Crit Care Med. 2013; 41: 2328-2335
        • Lannemyr L.
        • Ricksten S.E.
        • Rundqvist B.
        • et al.
        Differential Effects of Levosimendan and Dobutamine on Glomerular Filtration Rate in Patients with Heart Failure and Renal Impairment: A Randomized Double-blind Controlled Trial.
        J Am Heart Assoc. 2018; 7: e008455
        • Wang Q.
        • Yokoo H.
        • Takashina M.
        • et al.
        Anti-inflammatory Profile of Levosimendan in Cecal Ligation-induced Septic Mice and in Lipopolysaccharide-stimulated Macrophages.
        Crit Care Med. 2015; 43: e508-e520
        • Hasslacher J.
        • Bijuklic K.
        • Bertocchi C.
        • et al.
        Levosimendan inhibits release of reactive oxygen species in polymorphonuclear leukocytes in vitro and in patients with acute heart failure and septic shock: a prospective observational study.
        Crit Care. 2011; 15: R166
        • Parissis J.T.
        • Adamopoulos S.
        • Anto-niades C.
        • et al.
        Effects of levosimendan on circulating proinflammatory cytokines and soluble apoptosis mediators in patients with decompensated advanced heart failure.
        Am J Cardiol. 2004; 93: 1309-1312
        • Landoni G.
        • Lomivorotov V.V.
        • Alvaro G.
        • et al.
        Levosimendan for hemodynamic support after cardiac surgery.
        N Engl J Med. 2017; 376: 2021-2031
        • Cholley B.
        • Caruba T.
        • Grosjean S.
        • et al.
        Effect of Levosimendan on low cardiac output syndrome in patients with low ejection fraction undergoing coronary artery bypass grafting with cardiopulmonary bypass: The LICORN Randomized Clinical Trial.
        JAMA. 2017; 318: 548-556
        • Mehta R.H.
        • Leimberger J.D.
        • van Diepen S.
        • et al.
        Levosimendan in patients with left ventricular dysfunction undergoing cardiac surgery.
        N Engl J Med. 2017; 376: 2032-2042
        • Gordon A.C.
        • Perkins G.D.
        • Singer M.
        • et al.
        Levosimendan for the Prevention of Acute Organ Dysfunction in Sepsis.
        N Engl J Med. 2016; 375: 1638-1648
        • Luo C.
        • Yuan D.
        • Yao W.
        • et al.
        Dexmedetomidine protects against apoptosis induced by hypoxia/reoxygenation through the inhibition of gap junctions in NRK-52E cells.
        Life Sci. 2015; 122: 72-77
        • Ji F.
        • Li Z.
        • Young J.N.
        • et al.
        Post-Bypass Dexmedetomidine Use and Postoperative Acute Kidney Injury in Patients Undergoing Cardiac Surgery with Cardiopulmonary Bypass.
        PLoS One. 2013; 8: e77446
        • Cho J.S.
        • Shim J.K.
        • Soh S.
        • et al.
        Perioperative Dexmedetomidine Reduces the Incidence and Severity of Acute Kidney Injury following Valvular Heart Surgery.
        Kidney Int. 2016; 89: 693-700
        • Peng K.
        • Li D.
        • Applegate II, R.L.
        • et al.
        Effect of Dexmedetomidine on Cardiac Surgery-Associated Acute Kidney Injury: A Meta-Analysis with Trial Sequential Analysis of Randomized Controlled Trials.
        J Cardiothorac Vasc Anesth. 2020; 34: 603-613
        • Liu Y.
        • Sheng B.
        • Wang S.
        • et al.
        Dexmedetomidine Prevents Acute Kidney Injury after Adult Cardiac Surgery: A Meta-analysis of Randomized Controlled Trials.
        BMC Anesthesiol. 2018; 18: 7
        • Turan A.
        • Duncan A.
        • Leung S.
        • et al.
        Dexmedetomidine for Reduction of Atrial Fibrillation and Delirium after Cardiac Surgery (DECADE): A Randomised Placebo-Controlled Trial.
        Lancet. 2020; 396: 177-185
        • Menting T.P.
        • Wever K.E.
        • Ozdemir-van Brunschot D.M.D.
        • et al.
        Ischaemic Preconditioning for the Reduction of Renal Ischaemia Reperfusion Injury.
        Cochrane Database Syst Rev. 2017; 3: CD010777
        • Rozental O.
        • Thalappillil R.
        • White R.S.
        • et al.
        To Swan or Not to Swan: Indications, Alternatives, and Future Directions.
        J Cardiothorac Vasc Anesth. 2021; 35: 600-615
        • Hoogenberg K.
        • Smit A.J.
        • Girbes A.R.
        Effects of low-dose dopamine on renal and systemic hemodynamics during incremental norepinephrine infusion in healthy volunteers.
        Crit Care Med. 1998; 26: 260-265
        • Khanna A.
        • English S.W.
        • Wang X.S.
        • et al.
        Angiotensin II for the Treatment of Vasodilatory Shock.
        N Engl J Med. 2017; 377: 419-430
        • Tumlin J.A.
        • Murugan R.
        • Deane A.M.
        • et al.
        Outcomes in Patients with Vasodilatory Shock and Renal Replacement Therapy Treated with Intravenous Angiotensin II.
        Crit Care Med. 2018; 46: 949-957
        • Van den Berghe G.
        • Wouters P.
        • Weekers F.
        • et al.
        Intensive Insulin Therapy in Critically Ill Patients.
        N Engl J Med. 2001; 345: 1359-1367
        • Finfer S.
        • Chittock D.R.
        • Su S.Y.S.
        • et al.
        Intensive versus Conventional Glucose Control in Critically Ill Patients.
        N Engl J Med. 2009; 360: 1283-1297
        • Shiao C.C.
        • Huang T.M.
        • Spapen H.D.
        • et al.
        Optimal Timing of Renal Replacement Therapy Initiation in Acute Kidney Injury: The Elephant Felt by the Blindmen?.
        Crit Care. 2017; 21: 146
        • Ostermann M.
        • Joannidis M.
        • Pani A.
        • et al.
        Patient Selection and Timing of Continuous Renal Replacement Therapy.
        Blood Purif. 2016; 42: 224-237
        • Chawla L.S.
        • Bellomo R.
        • Bihorac A.
        • et al.
        Acute Kidney Disease and Renal Recovery: Consensus Report of the Acute Disease Quality Initiative (ADQI) 16 Workgroup.
        Nat Rev Nephrol. 2017; 13: 241-257
        • Rachoin J.S.
        • Weisberg L.S.
        Renal Replacement Therapy in the ICU.
        Crit Care Med. 2019; 47: 715-721
        • King J.D.
        • Kern M.H.
        • Jaar B.G.
        Extracorporeal Removal of Poisons and Toxins.
        CJASN. 2019; 14: 1408-1415
        • Cronin B.
        • O’Brien E.O.
        Intraoperative Renal Replacement Therapy: Practical Information for Anesthesiologists.
        J Cardiothorac Vasc Anesth. 2022; 36: 2656-2668
        • Gemmell L.
        • Docking R.
        • Black E.
        Renal Replacement Therapy in Critical Care.
        BJA Education. 2017; 17: 88-93
        • Edrees F.
        • Li T.
        • Vijayan A.
        Prolonged Intermittent Renal Replacement Therapy.
        Adv Chronic Kidney Dis. 2016; 23: 195-202
        • Kellum J.
        • Bellomo R.
        • Ronco C.
        Continuous renal replacement therapy.
        2nd edition. Oxford University press, New York2016: 21-35 (47-57, 63-67, 93-105)
        • Frank H.
        • Seligman A.
        • Fine J.
        Treatment of Uraemia After Acute Renal Failure by Peritoneal Irrigation.
        JAMA. 1946; 130: 703-705
        • Mehrotra R.
        • Devuyst O.
        • Davies S.
        • et al.
        The Current State of Peritoneal Dialysis.
        J Am Soc Nephrol. 2016; 27: 3238-3252
        • Cullis B.
        • Al-Hwiesh A.
        • Kilonzo K.
        • et al.
        ISPD Guidelines for Peritoneal Dialysis in Acute Kidney Injury: 2020 Update (Adults).
        Perit Dial Int. 2021; 41: 15-31
        • Pannu N.
        • Gibney R.T.N.
        Renal Replacement Therapy in the Intensive Care Unit.
        Ther Clin Risk Manag. 2005; 1: 141-150
        • Al-Hwiesh A.
        • Abdul-Rahman I.
        • Finkelstein F.
        • et al.
        Acute Kidney Injury in Critically Ill Patients: A Prospective Randomized Study of Tidal Peritoneal Dialysis Versus Continuous Renal Replacement Therapy.
        Ther Apher Dial. 2018; 22: 371-379
        • Manns B.
        • Doig C.J.
        • Lee H.
        • et al.
        Cost of Acute Renal Failure Requiring Dialysis in the Intensive Care Unit: Clinical and Resource Implications of Renal Recovery.
        Crit Care Med. 2003; 31: 449-455
        • Nash D.M.
        • Przech S.
        • Wald R.
        • et al.
        Systematic Review and Meta-analysis of Renal Replacement Therapy Modalities for Acute Kidney Injury in the Intensive Care Unit.
        J Crit Care. 2017; 41: 138-144
        • Chen H.
        • Yu R.G.
        • Yin N.N.
        • et al.
        Combination of Extracorporeal Membrane Oxygenation and Continuous Renal Replacement Therapy in Critically Ill Patients: A Systematic Review.
        Crit Care. 2014; 18: 675
        • Paine C.H.
        • Pichler R.H.
        Intraoperative Renal Replacement Therapy for Liver Transplantation: Is There Really a Benefit?.
        Liver Transpl. 2020; 26: 971-972
        • Tek E.
        • Sekerci S.
        • Arslan G.
        Intraoperative Hemodialysis During Emergency Intracranial Surgery.
        Anesth Analg. 1996; 83: 658-659
        • Cooper J.R.
        • Kurtz S.B.
        • Sawyer M.D.
        • et al.
        Intraoperative Hemodialysis During Emergent Laparotomy.
        Anesthesiology. 2000; 93: 1356-1357
        • Huang H.B.
        • Xu Y.
        • Zhou H.
        • et al.
        Intraoperative Continuous Renal Replacement Therapy During Liver Transplantation: A Meta-Analysis.
        Liver Transplant. 2020; 26: 1010-1018
        • Adelmann D.
        • Olmos A.
        • Liu L.L.
        • et al.
        Intraoperative Management of Liver Transplant Patients Without the Use of Renal Replacement Therapy.
        Transplantation. 2018; 102: e229-e235
        • Jeong R.
        • Wald R.
        • Bagshaw S.M.
        Timing of Renal-Replacement Therapy in Intensive Care Unit-related Acute Kidney Injury.
        Curr Opin Crit Care. 2021; 27: 573-581
        • Kellum J.A.
        • Bellomo R.
        • Mehta R.
        • et al.
        Blood Purification in Non-Renal Critical Illness.
        Blood Purif. 2003; 21: 6-13
        • Cruz D.N.
        • Perazella M.A.
        • Bellomo R.
        • et al.
        Extracorporeal Blood Purification Therapies for Prevention of Radiocontrast-induced Nephropathy.
        Am J Kidney Dis. 2006; 48: 361-371
        • Atan R.
        • Crosbie D.
        • Bellomo R.
        Techniques of Extracorporeal Cytokine Removal: A Systematic Review of the Literature.
        Blood Purif. 2012; 33: 88-100
        • Wald R.
        • Adhikari N.K.
        • Smith O.M.
        • et al.
        Canadian Critical Care Trials Group: Comparison of Standard and Accelerated Initiation of Renal Replacement Therapy in Acute Kidney Injury.
        Kidney Int. 2015; 88: 897-904
        • Yuan S.M.
        Acute Kidney Injury after Cardiac Surgery: Risk Factors and Novel Biomarkers.
        Braz J Cardiovasc Surg. 2019; 34: 352-360
        • Evans L.
        • Rhodes A.
        • Alhazzani W.
        • et al.
        Surviving Sepsis Campaign: International Guidelines for Management of Sepsis and Septic Shock 2021.
        Intensive Care Med. 2021; 47: 1181-1247