Advertisement

Monitoring During Vascular Surgery

Published:October 07, 2022DOI:https://doi.org/10.1016/j.anclin.2022.08.009

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribers receive full online access to your subscription and archive of back issues up to and including 2002.

      Content published before 2002 is available via pay-per-view purchase only.

      Subscribe:

      Subscribe to Anesthesiology Clinics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Papworth D.
        Intraoperative monitoring during vascular surgery.
        Anesthesiol Clin North America. 2004; 22 (vi): 223-250
        • American Society of Anesthesiologists
        Standards for basic anesthetic monitoring.
        • BLAISDELL F.W.
        • COOLEY D.A.
        The mechanism of paraplegia after temporary thoracic aortic occlusion and its relationship to spinal fluid pressure.
        Surgery. 1962; 51 (PMID: 13869747): 351-355
        • Miyamoto K.
        • Ueno A.
        • Wada T.
        • et al.
        A new and simple method of preventing spinal cord damage following temporary occlusion of the thoracic aorta by draining the cerebrospinal fluid.
        J Cardiovasc Surg. 1960; 1: 188-197
        • Dasmahapatra H.K.
        • Coles J.G.
        • Wilson G.J.
        • et al.
        Relationship between cerebrospinal fluid dynamics and reversible spinal cord ischemia during experimental thoracic aortic occlusion.
        J Thorac Cardiovasc Surg. 1988; 95 (Available at:): 920-923
        • McCullough J.L.
        • Hollier L.H.
        • Nugent M.
        Paraplegia after thoracic aortic occlusion: influence of cerebrospinal fluid drainage. Experimental and early clinical results.
        J Vasc Surg. 1988; 7 (Available at:): 153-160
        • Coselli J.S.
        • LeMaire S.A.
        • de Figueiredo L.P.
        • et al.
        Paraplegia after thoracoabdominal aortic aneurysm repair: is dissection a risk factor?.
        Ann Thorac Surg. 1997; 63 ([discussion: 35-6]): 28-35
        • Safi H.J.
        • Hess K.R.
        • Randel M.
        • et al.
        Cerebrospinal fluid drainage and distal aortic perfusion: reducing neurologic complications in repair of thoracoabdominal aortic aneurysm types I and II.
        J Vasc Surg. 1996; 23 ([discussion: 229]): 223-228
        • Hnath J.C.
        • Mehta M.
        • Taggert J.B.
        • et al.
        Strategies to improve spinal cord ischemia in endovascular thoracic aortic repair: outcomes of a prospective cerebrospinal fluid drainage protocol.
        J Vasc Surg. 2008; 48: 836-840
        • Hiratzka L.F.
        • Bakris G.L.
        • Beckman J.A.
        • et al.
        2010 ACCF/AHA/AATS/ACR/ASA/SCA/SCAI/SIR/STS/SVM Guidelines for the diagnosis and management of patients with thoracic aortic disease. A Report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines, A.
        J Am Coll Cardiol. 2010; 55: e27-e129
        • Etz C.D.
        • Weigang E.
        • Hartert M.
        • et al.
        Contemporary spinal cord protection during thoracic and thoracoabdominal aortic surgery and endovascular aortic repair: a position paper of the vascular domain of the European Association for Cardio-Thoracic Surgery.
        Eur J Cardiothorac Surg. 2015; 47: 943-957
        • Awad H.
        • Ramadan M.E.
        • El Sayed H.F.
        • et al.
        Spinal cord injury after thoracic endovascular aortic aneurysm repair.
        Can J Anaesth. 2017; 64: 1218-1235
        • Estrera A.L.
        • Sheinbaum R.
        • Miller C.C.
        • et al.
        Cerebrospinal fluid drainage during thoracic aortic repair: safety and current management.
        Ann Thorac Surg. 2009; 88 ([discussion: 15]): 9-15
        • Hanna J.M.
        • Andersen N.D.
        • Aziz H.
        • et al.
        Results with selective preoperative lumbar drain placement for thoracic endovascular aortic repair.
        Ann Thorac Surg. 2013; 95 ([discussion: 1974-5]): 1968-1974
        • Estrera A.L.
        • Miller C.C.
        • Huynh TTT
        • et al.
        Preoperative and operative predictors of delayed neurologic deficit following repair of thoracoabdominal aortic aneurysm.
        J Thorac Cardiovasc Surg. 2003; 126: 1288-1294
        • Brott T.G.
        • Hobson R.W.
        • Howard G.
        • et al.
        Stenting versus endarterectomy for treatment of carotid-artery stenosis.
        N Engl J Med. 2010; 363: 11-23
        • Li J.
        • Shalabi A.
        • Ji F.
        • et al.
        Monitoring cerebral ischemia during carotid endarterectomy and stenting.
        J Biomed Res. 2017; 31https://doi.org/10.7555/JBR.31.20150171
        • Hans S.S.
        • Jareunpoon O.
        Prospective evaluation of electroencephalography, carotid artery stump pressure, and neurologic changes during 314 consecutive carotid endarterectomies performed in awake patients.
        J Vasc Surg. 2007; 45: 511-515
      1. General anaesthesia versus local anaesthesia for carotid surgery (GALA): a multicentre, randomised controlled trial.
        Lancet. 2008; 372: 2132-2142
        • Reddy R.P.
        • Brahme I.S.
        • Karnati T.
        • et al.
        Diagnostic value of somatosensory evoked potential changes during carotid endarterectomy for 30-day perioperative stroke.
        Clin Neurophysiol. 2018; 129: 1819-1831
        • Nwachuku E.L.
        • Balzer J.R.
        • Yabes J.G.
        • et al.
        Diagnostic value of somatosensory evoked potential changes during carotid endarterectomy: a systematic review and meta-analysis.
        JAMA Neurol. 2015; 72: 73-80
        • Weigang E.
        • Hartert M.
        • Siegenthaler M.P.
        • et al.
        Perioperative management to improve neurologic outcome in thoracic or thoracoabdominal aortic stent-grafting.
        Ann Thorac Surg. 2006; 82: 1679-1687
        • Schurink G.W.H.
        • De Haan M.W.
        • Peppelenbosch A.G.
        • et al.
        Spinal cord function monitoring during endovascular treatment of thoracoabdominal aneurysms: implications for staged procedures.
        J Cardiovasc Surg (Torino). 2013; 54 (Available at:): 117-124
        • Banga P.V.
        • Oderich G.S.
        • Reis de Souza L.
        • et al.
        Neuromonitoring, cerebrospinal fluid drainage, and selective use of iliofemoral conduits to minimize risk of spinal cord injury during complex endovascular aortic repair.
        J Endovasc Ther. 2016; 23: 139-149
        • Legatt A.D.
        • Emerson R.G.
        • Epstein C.M.
        • et al.
        ACNS Guideline: Transcranial Electrical Stimulation Motor Evoked Potential Monitoring.
        J Clin Neurophysiol. 2016; 33: 42-50
        • Ghatol D.
        • Widrich J.
        Intraoperative Neurophysiological Monitoring.
        http://www.ncbi.nlm.nih.gov/pubmed/33085350
        Date: 2022
        Date accessed: April , 2022
        • Arnold M.
        • Sturzenegger M.
        • Schäffler L.
        • et al.
        Continuous intraoperative monitoring of middle cerebral artery blood flow velocities and electroencephalography during carotid endarterectomy. A comparison of the two methods to detect cerebral ischemia.
        Stroke. 1997; 28: 1345-1350https://doi.org/10.1161/01.str.28.7.1345
        • Woodworth G.F.
        • McGirt M.J.
        • Than K.D.
        • et al.
        Selective versus routine intraoperative shunting during carotid endarterectomy: a multivariate outcome analysis.
        Neurosurgery. 2007; 61 ([discussion: 1176-7]): 1170-1176
        • Sloan T.B.
        Anesthetic effects on electrophysiologic recordings.
        J Clin Neurophysiol. 1998; 15: 217-226
        • Side C.D.
        • Gosling R.G.
        Non-surgical assessment of cardiac function.
        Nature. 1971; 232: 335-336
        • Frazin L.
        • Talano J.V.
        • Stephanides L.
        • et al.
        Esophageal echocardiography.
        Circulation. 1976; 54: 102-108
        • Matsuzaki M.
        • Matsuda Y.
        • Ikee Y.
        • et al.
        Esophageal echocardiographic left ventricular anterolateral wall motion in normal subjects and patients with coronary artery disease.
        Circulation. 1981; 63: 1085-1092
        • Orihashi K.
        The history of transesophageal echocardiography: the role of inspiration, innovation, and applications.
        J Anesth. 2020; 34: 86-94
        • Fayad A.
        • Shillcutt S.K.
        Perioperative transesophageal echocardiography for non-cardiac surgery.
        Can J Anaesth. 2018; 65: 381-398
        • Purza R.
        • Ghosh S.
        • Walker C.
        • et al.
        Transesophageal echocardiography complications in adult cardiac surgery: a retrospective cohort study.
        Ann Thorac Surg. 2017; 103: 795-802
        • Shanewise J.S.
        • Cheung A.T.
        • Aronson S.
        • et al.
        ASE/SCA guidelines for performing a comprehensive intraoperative multiplane transesophageal echocardiography examination: recommendations of the American Society of Echocardiography Council for Intraoperative Echocardiography and the Society of Cardiovasc.
        Anesth Analg. 1999; 89: 870-884
        • Scheeren T.W.L.
        • Schober P.
        • Schwarte L.A.
        Monitoring tissue oxygenation by near infrared spectroscopy (NIRS): background and current applications.
        J Clin Monit Comput. 2012; 26: 279-287
        • Jöbsis F.F.
        Noninvasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters.
        Science. 1977; 198: 1264-1267
        • Edmonds H.L.
        • Ganzel B.L.
        • Austin E.H.
        Cerebral oximetry for cardiac and vascular surgery.
        Semin Cardiothorac Vasc Anesth. 2004; 8: 147-166
        • Raza S.S.
        • Ullah F.
        • Chandni
        • et al.
        Cerebral Oximetry Use For Cardiac Surgery. J Ayub Med Coll Abbottabad. 29(2):335-339.
        • Murkin J.M.
        • Adams S.J.
        • Novick R.J.
        • et al.
        Monitoring brain oxygen saturation during coronary bypass surgery: a randomized, prospective study.
        Anesth Analg. 2007; 104: 51-58
        • Fassiadis N.
        • Zayed H.
        • Rashid H.
        • et al.
        Invos Cerebral Oximeter compared with the transcranial Doppler for monitoring adequacy of cerebral perfusion in patients undergoing carotid endarterectomy.
        Int Angiol. 2006; 25 (Available at:): 401-406
        • Ali A.M.
        • Green D.
        • Zayed H.
        • et al.
        Cerebral monitoring in patients undergoing carotid endarterectomy using a triple assessment technique.
        Interact Cardiovasc Thorac Surg. 2011; 12: 454-457
        • Friedell M.L.
        • Clark J.M.
        • Graham D.A.
        • et al.
        Cerebral oximetry does not correlate with electroencephalography and somatosensory evoked potentials in determining the need for shunting during carotid endarterectomy.
        J Vasc Surg. 2008; 48: 601-606
        • Tan S.T.
        Cerebral oximetry in cardiac surgery.
        Hong Kong Med J = Xianggang Yi Xue Za Zhi. 2008; 14 (Available at:): 220-225