Advertisement

The Vascular System

Anatomical, Physiological, Pathological, and Aging Considerations

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribers receive full online access to your subscription and archive of back issues up to and including 2002.

      Content published before 2002 is available via pay-per-view purchase only.

      Subscribe:

      Subscribe to Anesthesiology Clinics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Aird W.C.
        Discovery of the cardiovascular system: from Galen to William Harvey: Discovery of the cardiovascular system.
        J Thromb Haemost. 2011; 9: 118-129
        • Bolli R.
        William harvey and the discovery of the circulation of the blood.
        Circ Res. 2019; 124: 1169-1171
        • Iberall A.S.
        Anatomy and steady flow characteristics of the arterial system with an introduction to its pulsatile characteristics.
        Math Biosci. 1967; 1: 375-395
        • Tennant M.
        • McGeachie J.K.
        Blood vessel structure and function: a brief update on recent advances.
        ANZ J Surg. 1990; 60: 747-753
        • Edgell C.J.
        • McDonald C.C.
        • Graham J.B.
        Permanent cell line expressing human factor VIII-related antigen established by hybridization.
        Proc Natl Acad Sci U S A. 1983; 80: 3734-3737
        • McIntyre T.M.
        • Zimmerman G.A.
        • Satoh K.
        • et al.
        Cultured endothelial cells synthesize both platelet-activating factor and prostacyclin in response to histamine, bradykinin, and adenosine triphosphate.
        J Clin Invest. 1985; 76: 271-280
        • Wilcox J.N.
        • Smith K.M.
        • Williams L.T.
        • et al.
        Platelet-derived growth factor mRNA detection in human atherosclerotic plaques by in situ hybridization.
        J Clin Invest. 1988; 82: 1134-1143
        • Sandow S.L.
        • Gzik D.J.
        • Lee R.M.K.W.
        Arterial internal elastic lamina holes: relationship to function?.
        J Anat. 2009; 214: 258-266
        • Taylor A.M.
        • Bordoni B.
        Histology, blood vascular system.
        in: StatPearls. StatPearls Publishing, 2022 (Available at:) (Accessed March 23, 2022)
        • Sheng Y.
        • Zhu L.
        The crosstalk between autonomic nervous system and blood vessels.
        Int J Physiol Pathophysiol Pharmacol. 2018; 10: 17-28
        • Laurent S.
        • Boutouyrie P.
        The structural factor of hypertension: large and small artery alterations.
        Circ Res. 2015; 116: 1007-1021
        • Korsgaard N.
        • Aalkjaer C.
        • Heagerty A.M.
        • et al.
        Histology of subcutaneous small arteries from patients with essential hypertension.
        Hypertension. 1993; 22: 523-526
        • Junqueira L.C.U.
        • Carneiro J.
        • Junqueira L.C.U.
        Basic histology: text & atlas. 10.
        Lange, 2003
        • Tucker W.D.
        • Arora Y.
        • Mahajan K.
        Anatomy, Blood Vessels.
        in: StatPearls. StatPearls Publishing, 2022 (Accessed)
        • Godwin L.
        • Tariq M.A.
        • Crane J.S.
        Histology, Capillary.
        in: StatPearls. StatPearls Publishing, 2022 (Available at:) (Accessed March 23, 2022)
        • Brook W.H.
        Vasa vasorum of veins in dog and man.
        Angiology. 1977; 28: 351-360
        • Hainsworth R.
        Vascular capacitance: its control and importance.
        Rev Physiol Biochem Pharmacol. 1986; 105: 101-173
        • Rothe C.F.
        Reflex control of veins and vascular capacitance.
        Physiol Rev. 1983; 63: 1281-1342
        • Gelman S.
        Venous function and central venous pressure: a physiologic story.
        Anesthesiology. 2008; 108: 735-748
        • Rehm M.
        • Zahler S.
        • Lötsch M.
        • et al.
        Endothelial glycocalyx as an additional barrier determining extravasation of 6% hydroxyethyl starch or 5% albumin solutions in the coronary vascular bed.
        Anesthesiology. 2004; 100: 1211-1223
        • Reitsma S.
        • Slaaf D.W.
        • Vink H.
        • et al.
        The endothelial glycocalyx: composition, functions, and visualization.
        Pflugers Arch. 2007; 454: 345-359
        • Adamson R.H.
        • Lenz J.F.
        • Zhang X.
        • et al.
        Oncotic pressures opposing filtration across non-fenestrated rat microvessels.
        J Physiol. 2004; 557: 889-907
        • Pries A.R.
        • Secomb T.W.
        • Gaehtgens P.
        The endothelial surface layer.
        Pflugers Arch. 2000; 440: 653-666
        • Chappell D.
        • Jacob M.
        • Hofmann-Kiefer K.
        • et al.
        Antithrombin reduces shedding of the endothelial glycocalyx following ischaemia/reperfusion.
        Cardiovasc Res. 2009; 83: 388-396
        • Nieuwdorp M.
        • Mooij H.L.
        • Kroon J.
        • et al.
        Endothelial glycocalyx damage coincides with microalbuminuria in type 1 diabetes.
        Diabetes. 2006; 55: 1127-1132
        • Bruegger D.
        • Jacob M.
        • Rehm M.
        • et al.
        Atrial natriuretic peptide induces shedding of endothelial glycocalyx in coronary vascular bed of guinea pig hearts.
        Am J Physiol Heart Circ Physiol. 2005; 289: H1993-H1999
        • Becker B.F.
        • Chappell D.
        • Bruegger D.
        • et al.
        Therapeutic strategies targeting the endothelial glycocalyx: acute deficits, but great potential.
        Cardiovasc Res. 2010; 87: 300-310
        • Bruegger D.
        • Rehm M.
        • Jacob M.
        • et al.
        Exogenous nitric oxide requires an endothelial glycocalyx to prevent postischemic coronary vascular leak in guinea pig hearts.
        Crit Care Lond Engl. 2008; 12: R73
        • Chappell D.
        • Jacob M.
        • Hofmann-Kiefer K.
        • et al.
        Hydrocortisone preserves the vascular barrier by protecting the endothelial glycocalyx.
        Anesthesiology. 2007; 107: 776-784
        • Jacob M.
        • Bruegger D.
        • Rehm M.
        • et al.
        Contrasting effects of colloid and crystalloid resuscitation fluids on cardiac vascular permeability.
        Anesthesiology. 2006; 104: 1223-1231
        • Annecke T.
        • Rehm M.
        • Bruegger D.
        • et al.
        Ischemia-reperfusion-induced unmeasured anion generation and glycocalyx shedding: sevoflurane versus propofol anesthesia.
        J Invest Surg. 2012; 25: 162-168
        • Dart A.M.
        • Kingwell B.A.
        Pulse pressure--a review of mechanisms and clinical relevance.
        J Am Coll Cardiol. 2001; 37: 975-984
        • Magder S.
        The meaning of blood pressure.
        Crit Care Lond Engl. 2018; 22: 257
      1. Cohen DL, Townsend RR. Central Blood Pressure and Chronic Kidney Disease Progression 2011. Available at: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3056344/.

        • Tykocki N.R.
        • Boerman E.M.
        • Jackson W.F.
        Smooth Muscle Ion Channels and Regulation of Vascular Tone in Resistance Arteries and Arterioles.
        Compr Physiol. 2017; 7: 485-581
        • Hall J.E.
        Guyton and Hall textbook of medical physiology.
        13th edition. Elsevier, 2016
        • Ralevic V.
        • Burnstock G.
        Receptors for purines and pyrimidines.
        Pharmacol Rev. 1998; 50: 413-492
        • McLatchie L.M.
        • Fraser N.J.
        • Main M.J.
        • et al.
        RAMPs regulate the transport and ligand specificity of the calcitonin-receptor-like receptor.
        Nature. 1998; 393: 333-339
        • Håkanson R.
        • Wahlestedt C.
        • Ekblad E.
        • et al.
        Neuropeptide Y: coexistence with noradrenaline. Functional implications.
        Prog Brain Res. 1986; 68: 279-287
        • Vanhoutte P.M.
        • Rimele T.J.
        Calcium and alpha-adrenoceptors in activation of vascular smooth muscle.
        J Cardiovasc Pharmacol. 1982; 4: S280-S286
        • Guyenet P.G.
        The sympathetic control of blood pressure.
        Nat Rev Neurosci. 2006; 7: 335-346
        • Daniel E.E.
        • Brown R.D.
        • Wang Y.F.
        • et al.
        α-Adrenoceptors in canine mesenteric artery are predominantly 1A subtype: pharmacological and immunochemical evidence.
        J Pharmacol Exp Ther. 1999; 291: 671
        • Osswald W.
        • Guimarães S.
        Adrenergic mechanisms in blood vessels: Morphological and pharmacological aspects.
        in: Reviews of physiology, biochemistry and pharmacology. 96. Springer Berlin Heidelberg, 1983: 53-122https://doi.org/10.1007/BFb0031007
        • Begonha R.
        • Moura D.
        • Guimarães S.
        Vascular β-adrenoceptor-mediated relaxation and the tone of the tissue in canine arteries.
        J Pharm Pharmacol. 2011; 47: 510-513
        • Bolton T.B.
        • Lim S.P.
        Action of acetylcholine on smooth muscle.
        Z Kardiol. 1991; 80: 73-77
        • Rowell L.B.
        Ideas about control of skeletal and cardiac muscle blood flow (1876-2003): cycles of revision and new vision.
        J Appl Physiol Bethesda Md 1985. 2004; 97: 384-392
        • Cosentino F.
        • Sill J.C.
        • Katusić Z.S.
        Role of superoxide anions in the mediation of endothelium-dependent contractions.
        Hypertens Dallas Tex 1979. 1994; 23: 229-235
        • Gryglewski R.J.
        • Palmer R.M.
        • Moncada S.
        Superoxide anion is involved in the breakdown of endothelium-derived vascular relaxing factor.
        Nature. 1986; 320: 454-456
        • Mason D.T.
        • Bartter F.C.
        Autonomic regulation of blood volume.
        Anesthesiology. 1968; 29: 681-692
        • Emerson T.E.
        Changes of venous return and other hemodynamic parameters during bradykinin infusion.
        Am J Physiol. 1967; 212: 1455-1460
        • Rothe C.F.
        • Gaddis M.L.
        Autoregulation of cardiac output by passive elastic characteristics of the vascular capacitance system.
        Circulation. 1990; 81: 360-368
        • Rowell L.B.
        Human cardiovascular control.
        Oxford University Press, 1993
        • Gregoretti S.
        • Henderson T.
        • Parks D.A.
        • et al.
        Haemodynamic changes and oxygen uptake during crossclamping of the thoracic aorta in dexmedetomidine pretreated dogs.
        Can J Anaesth J Can Anesth. 1992; 39: 731-741
        • Gelman S.
        • Khazaeli M.B.
        • Orr R.
        • et al.
        Blood volume redistribution during cross-clamping of the descending aorta.
        Anesth Analg. 1994; 78: 219-224
        • Karim F.
        • Hainsworth R.
        Responses of abdominal vascular capacitance to stimulation of splachnic nerves.
        Am J Physiol. 1976; 231: 434-440
        • Gelman S.
        • Mushlin P.S.
        Catecholamine-induced changes in the splanchnic circulation affecting systemic hemodynamics.
        Anesthesiology. 2004; 100: 434-439
        • Nyhan D.
        • Berkowitz D.E.
        Perioperative Blood Pressure Management: Does Central Vascular Stiffness Matter?.
        Anesth Analg. 2008; 107: 1103-1106
        • Ruiz J.L.
        • Hutcheson J.D.
        • Aikawa E.
        Cardiovascular calcification: current controversies and novel concepts.
        Cardiovasc Pathol Off J Soc Cardiovasc Pathol. 2015; 24: 207-212
        • Shim C.Y.
        Arterial-cardiac interaction: the concept and implications.
        https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3150697/
        Date: 2011
        Date accessed: April 27, 2022
        • Andersson C.
        • Johnson A.D.
        • Benjamin E.J.
        • et al.
        70-year legacy of the framingham heart study.
        Nat Rev Cardiol. 2019; 16: 687-698
        • Kannel W.B.
        • Dawber T.R.
        • Kagan A.
        • et al.
        Factors of risk in the development of coronary heart disease--six year follow-up experience. The Framingham Study.
        Ann Intern Med. 1961; 55: 33-50
        • Kannel W.B.
        Habitual level of physical activity and risk of coronary heart disease: the Framingham study.
        Can Med Assoc J. 1967; 96: 811-812
        • Hubert H.B.
        • Feinleib M.
        • McNamara P.M.
        • et al.
        Obesity as an independent risk factor for cardiovascular disease: a 26-year follow-up of participants in the Framingham Heart Study.
        Circulation. 1983; 67: 968-977
        • Castelli W.P.
        • Abbott R.D.
        • McNamara P.M.
        Summary estimates of cholesterol used to predict coronary heart disease.
        Circulation. 1983; 67: 730-734
        • Levy D.
        • Garrison R.J.
        • Savage D.D.
        • et al.
        Prognostic implications of echocardiographically determined left ventricular mass in the Framingham Heart Study.
        N Engl J Med. 1990; 322: 1561-1566
        • Lauer M.S.
        • Okin P.M.
        • Larson M.G.
        • et al.
        Impaired heart rate response to graded exercise. Prognostic implications of chronotropic incompetence in the Framingham Heart Study.
        Circulation. 1996; 93: 1520-1526
        • Shoamanesh A.
        • Preis S.R.
        • Beiser A.S.
        • et al.
        Circulating biomarkers and incident ischemic stroke in the Framingham Offspring Study.
        Neurology. 2016; 87: 1206-1211
        • Wang T.J.
        • Gona P.
        • Larson M.G.
        • et al.
        Multiple biomarkers and the risk of incident hypertension.
        Hypertens Dallas Tex 1979. 2007; 49: 432-438
        • Mitchell G.F.
        • Hwang S.J.
        • Vasan R.S.
        • et al.
        Arterial stiffness and cardiovascular events: the Framingham Heart Study.
        Circulation. 2010; 121: 505-511
        • Tsao C.W.
        • Preis S.R.
        • Peloso G.M.
        • et al.
        Relations of long-term and contemporary lipid levels and lipid genetic risk scores with coronary artery calcium in the framingham heart study.
        J Am Coll Cardiol. 2012; 60: 2364-2371
        • Tsao C.W.
        • Gona P.N.
        • Salton C.J.
        • et al.
        Left Ventricular Structure and Risk of Cardiovascular Events: A Framingham Heart Study Cardiac Magnetic Resonance Study.
        J Am Heart Assoc. 2015; 4: e002188
        • Dehghan A.
        • Bis J.C.
        • White C.C.
        • et al.
        Genome-wide association study for incident myocardial infarction and coronary heart disease in prospective cohort studies: the CHARGE consortium.
        PLoS One. 2016; 11: e0144997
        • Natarajan P.
        • Bis J.C.
        • Bielak L.F.
        • et al.
        Multiethnic exome-wide association study of subclinical atherosclerosis.
        Circ Cardiovasc Genet. 2016; 9: 511-520
        • Ligthart S.
        • Marzi C.
        • Aslibekyan S.
        • et al.
        DNA methylation signatures of chronic low-grade inflammation are associated with complex diseases.
        Genome Biol. 2016; 17: 255
        • Xiao L.
        • Harrison D.G.
        Inflammation in Hypertension.
        Can J Cardiol. 2020; 36: 635-647
        • Aragam K.G.
        • Natarajan P.
        Polygenic Scores to Assess Atherosclerotic Cardiovascular Disease Risk: Clinical Perspectives and Basic Implications.
        Circ Res. 2020; 126: 1159-1177
        • Münzel T.
        Up in the air: links between the environment and cardiovascular disease.
        Cardiovasc Res. 2019; 115: e144-e146
        • Ference B.A.
        • Ginsberg H.N.
        • Graham I.
        • et al.
        Low-density lipoproteins cause atherosclerotic cardiovascular disease. 1. Evidence from genetic, epidemiologic, and clinical studies. A consensus statement from the European Atherosclerosis Society Consensus Panel.
        Eur Heart J. 2017; 38: 2459-2472
        • Cybulsky M.I.
        • Gimbrone M.A.
        Endothelial expression of a mononuclear leukocyte adhesion molecule during atherogenesis.
        Science. 1991; 251: 788-791
        • Skålén K.
        • Gustafsson M.
        • Rydberg E.K.
        • et al.
        Subendothelial retention of atherogenic lipoproteins in early atherosclerosis.
        Nature. 2002; 417: 750-754
        • Navab M.
        • Ananthramaiah G.M.
        • Reddy S.T.
        • et al.
        The oxidation hypothesis of atherogenesis: the role of oxidized phospholipids and HDL.
        J Lipid Res. 2004; 45: 993-1007
        • Milioti N.
        • Bermudez-Fajardo A.
        • Penichet M.L.
        • et al.
        Antigen-Induced Immunomodulation in the Pathogenesis of Atherosclerosis.
        (Available at:)
        • Nus M.
        • Mallat Z.
        Immune-mediated mechanisms of atherosclerosis and implications for the clinic.
        Expert Rev Clin Immunol. 2016; 12: 1217-1237
        • Bäck M.
        • Yurdagul A.
        • Tabas I.
        • et al.
        Inflammation and its resolution in atherosclerosis: mediators and therapeutic opportunities.
        Nat Rev Cardiol. 2019; 16: 389-406
        • Bennett M.R.
        • Sinha S.
        • Owens G.K.
        Vascular smooth muscle cells in atherosclerosis.
        Circ Res. 2016; 118: 692-702
        • Robbins C.S.
        • Hilgendorf I.
        • Weber G.F.
        • et al.
        Local proliferation dominates lesional macrophage accumulation in atherosclerosis.
        Nat Med. 2013; 19: 1166-1172
        • Geng Y.J.
        • Libby P.
        Evidence for apoptosis in advanced human atheroma. Colocalization with interleukin-1 beta-converting enzyme.
        Am J Pathol. 1995; 147: 251-266
        • Huang H.
        • Virmani R.
        • Younis H.
        • et al.
        The Impact of Calcification on the Biomechanical Stability of Atherosclerotic Plaques.
        Circulation. 2001; 103: 1051-1056
        • Kelly-Arnold A.
        • Maldonado N.
        • Laudier D.
        • et al.
        Revised microcalcification hypothesis for fibrous cap rupture in human coronary arteries.
        Proc Natl Acad Sci. 2013; 110: 10741-10746
        • Imoto K.
        • Hiro T.
        • Fujii T.
        • et al.
        Longitudinal structural determinants of atherosclerotic plaque vulnerability.
        J Am Coll Cardiol. 2005; 46: 1507-1515
        • Ludman A.
        • Venugopal V.
        • Yellon D.M.
        • et al.
        Statins and cardioprotection — More than just lipid lowering?.
        Pharmacol Ther. 2009; 122: 30-43
        • Bentzon J.F.
        • Otsuka F.
        • Virmani R.
        • et al.
        Mechanisms of plaque formation and rupture.
        Circ Res. 2014; 114: 1852-1866
        • Libby P.
        • Buring J.E.
        • Badimon L.
        • et al.
        Atherosclerosis.
        Nat Rev Dis Primer. 2019; 5: 56
        • Martinod K.
        • Wagner D.D.
        Thrombosis: tangled up in NETs.
        Blood. 2014; 123: 2768-2776
        • Folco E.J.
        • Mawson T.L.
        • Vromman A.
        • et al.
        Neutrophil extracellular traps induce endothelial cell activation and tissue factor production through interleukin-1α and cathepsin G.
        Arterioscler Thromb Vasc Biol. 2018; 38: 1901-1912
        • Fahed A.C.
        • Jang I.K.
        Plaque erosion and acute coronary syndromes: phenotype, molecular characteristics and future directions.
        Nat Rev Cardiol. 2021; 18: 724-734
        • Quillard T.
        • Franck G.
        • Mawson T.
        • et al.
        Mechanisms of erosion of atherosclerotic plaques.
        Curr Opin Lipidol. 2017; 28: 434-441
        • Sarnak Mark J.
        • Amann K.
        • Bangalore Sripal
        • et al.
        Chronic kidney disease and coronary artery disease.
        Am Coll Cardiol Found. 2019; (Accessed May 13, 2022)https://doi.org/10.1016/j.jacc.2019.08.1017
        • Franck G.
        • Mawson T.
        • Sausen G.
        • et al.
        Flow perturbation mediates neutrophil recruitment and potentiates endothelial injury via TLR2 in mice: implications for superficial erosion.
        Circ Res. 2017; 121: 31-42
        • Megens R.T.A.
        • Vijayan S.
        • Lievens D.
        • et al.
        Presence of luminal neutrophil extracellular traps in atherosclerosis.
        Thromb Haemost. 2012; 107: 597-598
        • Quillard T.
        • Araújo H.A.
        • Franck G.
        • et al.
        TLR2 and neutrophils potentiate endothelial stress, apoptosis and detachment: implications for superficial erosion.
        Eur Heart J. 2015; 36: 1394-1404
        • Sampson U.K.
        • Fowkes F.G.R.
        • McDermott M.M.
        • et al.
        Global and regional burden of death and disability from peripheral artery disease: 21 world regions, 1990 to 2010.
        Glob Heart. 2014; 9: 145-158
        • Hirsch A.T.
        • Haskal Z.J.
        • Hertzer N.R.
        • et al.
        ACC/AHA guidelines for the management of patients with peripheral arterial disease (lower extremity, renal, mesenteric, and abdominal aortic): a collaborative report from the american associations for vascular surgery/society for vascular surgery, society for cardiovascular angiography and interventions, society for vascular medicine and biology, society of interventional radiology, and the ACC/AHA task force on practice guidelines (writing committee to develop guidelines for the management of patients with peripheral arterial disease)--summary of recommendations.
        J Vasc Interv Radiol JVIR. 2006; 17 ([quiz: 1398]): 1383-1397
        • Narula N.
        • Dannenberg A.J.
        • Olin J.W.
        • et al.
        Pathology of peripheral artery disease in patients with critical limb ischemia.
        J Am Coll Cardiol. 2018; 72: 2152-2163
        • Elliott R.J.
        • McGrath L.T.
        Calcification of the human thoracic aorta during aging.
        Calcif Tissue Int. 1994; 54: 268-273
        • Proudfoot D.
        • Shanahan C.M.
        Biology of calcification in vascular cells: intima versus media.
        Herz. 2001; 26: 245-251
        • Lehto S.
        • Niskanen L.
        • Suhonen M.
        • et al.
        Medial artery calcification. A neglected harbinger of cardiovascular complications in non-insulin-dependent diabetes mellitus.
        Arterioscler Thromb Vasc Biol. 1996; 16: 978-983
        • Moe S.M.
        • Chen N.X.
        Mechanisms of vascular calcification in chronic kidney disease: figure 1.
        J Am Soc Nephrol. 2008; 19: 213-216
        • Lanzer P.
        • Boehm M.
        • Sorribas V.
        • et al.
        Medial vascular calcification revisited: review and perspectives.
        Eur Heart J. 2014; 35: 1515-1525