Advertisement

Anaesthesia for Hepatic Resection Surgery

Published:February 11, 2022DOI:https://doi.org/10.1016/j.anclin.2021.11.004

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribers receive full online access to your subscription and archive of back issues up to and including 2002.

      Content published before 2002 is available via pay-per-view purchase only.

      Subscribe:

      Subscribe to Anesthesiology Clinics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Siegel R.L.
        • Miller K.D.
        • Jemal A.
        Cancer statistics, 2020.
        Ca Cancer J Clin. 2020; 70: 7-30
        • Yamazaki S.
        • Takayama T.
        Current topics in liver surgery.
        Ann Gastroenterological Surg. 2019; 3: 146-159
        • Dorcaratto D.
        • Mazzinari G.
        • Fernandez M.
        • et al.
        Impact of postoperative complications on survival and recurrence after resection of colorectal liver metastases.
        Ann Surg. 2019; 270: 1018-1027
        • Kokudo N.
        • Takemura N.
        • Ito K.
        • et al.
        The history of liver surgery: achievements over the past 50 years.
        Ann Gastroenterological Surg. 2020; 4: 109-117
        • Roberts K.J.
        • White A.
        • Cockbain A.
        • et al.
        Performance of prognostic scores in predicting long-term outcome following resection of colorectal liver metastases.
        Br J Surg. 2014; 101: 856-866
        • Fong Y.
        • Fortner J.
        • Sun R.L.
        • et al.
        Clinical score for predicting recurrence after hepatic resection for metastatic colorectal cancer.
        Ann Surg. 1999; 230: 309
        • Konopke R.
        • Kersting S.
        • Distler M.
        • et al.
        Prognostic factors and evaluation of a clinical score for predicting survival after resection of colorectal liver metastases.
        Liver Int. 2009; 29: 89-102
        • Yamashita S.
        • Brudvik K.W.
        • Kopetz S.E.
        • et al.
        Embryonic origin of primary colon cancer predicts pathologic response and survival in patients undergoing resection for colon cancer liver metastases.
        Ann Surg. 2018; 267: 514-520
        • Charnsangavej C.
        • Clary B.
        • Fong Y.
        • et al.
        Selection of patients for resection of hepatic colorectal metastases: expert consensus statement.
        Ann Surg Oncol. 2006; 13: 1261-1268
        • Smith T.B.
        • Stonell C.
        • Purkayastha S.
        • et al.
        Cardiopulmonary exercise testing as a risk assessment method in non cardio-pulmonary surgery: a systematic review.
        Anaesthesia. 2009; 64: 883-893
        • Junejo M.A.
        • Mason J.M.
        • Sheen A.J.
        • et al.
        Cardiopulmonary exercise testing for preoperative risk assessment before hepatic resection.
        Br J Surg. 2012; 99: 1097-1104
        • Carlisle J.B.
        Assessing fitness, predicting outcome, and the missing axis.
        Br J Anaesth. 2012; 109: 35-39
        • Carlisle J.
        Pre-operative co-morbidity and postoperative survival in the elderly: beyond one lunar orbit.
        Anaesthesia. 2014; 69: 17-25
        • Carlisle J.
        • Danjoux G.
        • Kerr K.
        • et al.
        Validation of long-term survival prediction for scheduled abdominal aortic aneurysm repair with an independent calculator using only pre-operative variables.
        Anaesthesia. 2015; 70: 654-665
        • Lin H.-S.
        • Watts J.N.
        • Peel N.M.
        • et al.
        Frailty and post-operative outcomes in older surgical patients: a systematic review.
        BMC Geriatr. 2016; 16: 157
        • Clegg A.
        • Young J.
        • Iliffe S.
        • et al.
        Frailty in elderly people.
        Lancet. 2013; 381: 752-762
        • Fritz B.A.
        • Cui Z.
        • Zhang M.
        • et al.
        Deep-learning model for predicting 30-day postoperative mortality.
        Br J Anaesth. 2019; 123: 688-695
        • Wischmeyer P.E.
        • Carli F.
        • Evans D.C.
        • et al.
        Workgroup PQI (POQI) 2: American Society for Enhanced Recovery and Perioperative Quality Initiative Joint Consensus Statement on Nutrition Screening and Therapy Within a Surgical Enhanced Recovery Pathway.
        Anesth Analg. 2018; 126: 1883-1895
        • Gillis C.
        • Buhler K.
        • Bresee L.
        • et al.
        Effects of nutritional prehabilitation, with and without exercise, on outcomes of patients who undergo colorectal surgery: a systematic review and meta-analysis.
        Gastroenterology. 2018; 155: 391-410.e4
        • Wong C.S.
        • Liau S.-S.
        Perioperative immunonutrition in major hepatic resection: a systematic review and meta-analysis.
        Hpb. 2018; 20: S369-S370
        • McKay B.P.
        • Larder A.L.
        • Lam V.
        Pre-Operative vs. Peri-Operative Nutrition Supplementation in Hepatic Resection for Cancer: A Systematic Review.
        Nutr Cancer. 2019; 71: 1-20
        • Guan H.
        • Huang Q.
        • Liu C.
        • et al.
        Clinical efficacy of immunonutrition support in perioperative period of hepatectomy: a Meta analysis.
        Chin J Dig Surg. 2019; 18: 951-959
        • Dunne D.F.J.
        • Jack S.
        • Jones R.P.
        • et al.
        Randomized clinical trial of prehabilitation before planned liver resection.
        Br J Surg. 2016; 103: 504-512
        • West M.
        • Loughney L.
        • Lythgoe D.
        • et al.
        Effect of prehabilitation on objectively measured physical fitness after neoadjuvant treatment in preoperative rectal cancer patients: a blinded interventional pilot study.
        Br J Anaesth. 2014; 114: 244-251
        • Richards T.
        • Baikady R.R.
        • Clevenger B.
        • et al.
        Preoperative intravenous iron to treat anaemia before major abdominal surgery (PREVENTT): a randomised, double-blind, controlled trial.
        Lancet. 2020; https://doi.org/10.1016/s0140-6736(20)31539-7
        • Muñoz M.
        • Laso-Morales M.J.
        • Gómez-Ramírez S.
        • et al.
        Pre-operative haemoglobin levels and iron status in a large multicentre cohort of patients undergoing major elective surgery.
        Anaesthesia. 2017; 72: 826-834
        • Doherty D.T.
        • Coe P.O.
        • Rimmer L.
        • et al.
        Hepatic steatosis in patients undergoing resection of colorectal liver metastases: A target for prehabilitation? A narrative review.
        Surg Oncol. 2019; 30: 147-158
        • DelPiccolo N.
        • Onkendi E.
        • Nguyen J.
        • et al.
        Outcomes of minimally invasive versus open major hepatic resection.
        J Laparoendosc Adv S. 2020; 30: 790-796
        • Lewin J.W.
        • O’Rourke N.A.
        • Chiow A.K.H.
        • et al.
        Long-term survival in laparoscopic vs open resection for colorectal liver metastases: inverse probability of treatment weighting using propensity scores.
        Hpb. 2016; 18: 183-191
        • Brough D.
        • O’Rourke N.
        Laparoscopic hepatic resection.
        Laparosc Surg. 2020; 4: 18
        • Chan A.K.C.
        • Jamdar S.
        • Sheen A.J.
        • et al.
        The OSLO-COMET randomized controlled trial of laparoscopic versus open resection for colorectal liver metastases.
        Ann Surg. 2018; 268: e69
        • Kumar K.
        • Kirksey M.A.
        • Duong S.
        • et al.
        A review of opioid-sparing modalities in perioperative pain management: methods to decrease opioid use postoperatively.
        Anesth Analg. 2017; 125: 1749
        • Revie E.J.
        • McKeown D.W.
        • Wilson J.A.
        • et al.
        Randomized clinical trial of local infiltration plus patient-controlled opiate analgesia vs. epidural analgesia following liver resection surgery.
        HPB. 2012; 14: 611-618
        • Hughes M.J.
        • Harrison E.M.
        • Peel N.J.
        • et al.
        Randomized clinical trial of perioperative nerve block and continuous local anaesthetic infiltration via wound catheter versus epidural analgesia in open liver resection (LIVER 2 trial).
        Br J Surg. 2015; 102: 1619-1628
        • Mungroop T.H.
        • Veelo D.P.
        • Busch O.R.
        • et al.
        Continuous wound infiltration versus epidural analgesia after hepato-pancreato-biliary surgery (POP-UP): a randomised controlled, open-label, non-inferiority trial.
        Lancet Gastroenterol Hepatol. 2016; 1: 105-113
        • Koning M.V.
        • Klimek M.
        • Rijs K.
        • et al.
        Intrathecal hydrophilic opioids for abdominal surgery: a meta- analysis, meta-regression, and trial sequential analysis.
        Br J Anaesth. 2020; 125: 358-372
        • Dichtwald S.
        • Ben-Haim M.
        • Papismedov L.
        • et al.
        Intrathecal morphine versus intravenous opioid administration to impact postoperative analgesia in hepato-pancreatic surgery: a randomized controlled trial.
        J Anesth. 2017; 31: 237-245
        • Kang R.
        • Chin K.J.
        • Gwak M.S.
        • et al.
        Bilateral single-injection erector spinae plane block versus intrathecal morphine for postoperative analgesia in living donor laparoscopic hepatectomy: a randomized non-inferiority trial.
        Reg Anesth Pain Med. 2019; 44: 1059
        • Roy J.-D.
        • Massicotte L.
        • Sassine M.-P.
        • et al.
        A comparison of intrathecal morphine/fentanyl and patient-controlled analgesia with patient-controlled analgesia alone for analgesia after liver resection.
        Anesth Analg. 2006; 103: 990-994
        • Tang J.
        • Churilov L.
        • Tan C.O.
        • et al.
        Intrathecal morphine is associated with reduction in postoperative opioid requirements and improvement in postoperative analgesia in patients undergoing open liver resection.
        Bmc Anesthesiol. 2020; 20: 207
        • Terkawi A.S.
        • Tsang S.
        • Kazemi A.
        • et al.
        A clinical comparison of intravenous and epidural local anesthetic for major abdominal surgery.
        Reg Anesth pain Med. 2016; 41: 28-36
        • Weibel S.
        • Jokinen J.
        • Pace N.L.
        • et al.
        Efficacy and safety of intravenous lidocaine for postoperative analgesia and recovery after surgery: a systematic review with trial sequential analysis † †This review is an abridged version of a Cochrane Review previously published in the Cochrane.
        Database Syst Rev. 2015; Issue 7 (see www.thecochranelibrary.com for information).1 Cochrane Reviews are regularly updated as new evidence emerges and in response to feedback, and Cochrane Database of Systematic Reviews should be consulted for the most recent version of the review. British Journal of Anaesthesia 2016; 116:770–783: CD009642
        • McCarthy G.C.
        • Megalla S.A.
        • Habib A.S.
        Impact of Intravenous Lidocaine Infusion on Postoperative Analgesia and Recovery from Surgery.
        Drugs. 2010; 70: 1149-1163
        • Yon J.
        • Choi G.
        • Kang H.
        • et al.
        Intraoperative systemic lidocaine for pre-emptive analgesics in subtotal gastrectomy: a prospective, randomized, double-blind, placebo-controlled study.
        Can J Surg. 2014; 57: 175182
        • Eipe N.
        • Gupta S.
        • Penning J.
        Intravenous lidocaine for acute pain: an evidence-based clinical update.
        BJA Education. 2016; 16: 292-298
        • Tikuišis R.
        • Miliauskas P.
        • Samalavičius N.E.
        • et al.
        Intravenous lidocaine for post-operative pain relief after hand-assisted laparoscopic colon surgery: a randomized, placebo-controlled clinical trial.
        Tech Coloproctol. 2014; 18: 373-380
        • Greenwood E.
        • Nimmo S.
        • Paterson H.
        • et al.
        Intravenous lidocaine infusion as a component of multimodal analgesia for colorectal surgery—measurement of plasma levels.
        Perioper Med. 2019; 8: 1
        • Kaba A.
        • Laurent S.
        • Detroz B.
        Intravenous lidocaine infusion facilitates acute rehabilitation after laparoscopic colectomy.
        Anesthesiology. 2007; 106: 11-18
        • Vigneault L.
        • Turgeon A.
        • Côté D.
        • et al.
        Perioperative intravenous lidocaine infusion for postoperative pain control: a meta-analysis of randomized controlled trials.
        Can J Anaesth. 2011; 58: 22-37
        • Sun Y.
        • Li T.
        • Wang N.
        • et al.
        Perioperative systemic lidocaine for postoperative analgesia and recovery after abdominal surgery: a meta-analysis of randomized controlled trials.
        Dis Colon Rectum. 2012; 55: 1183-1194
        • Moggia E.
        • Rouse B.
        • Simillis C.
        • et al.
        Methods to decrease blood loss during liver resection: a network meta-analysis.
        Cochrane Db Syst Rev. 2016; https://doi.org/10.1002/14651858.cd010683.pub3
        • Jones RMcL.
        • Moulton C.E.
        • Hardy K.J.
        Central venous pressure and its effect on blood loss during liver resection.
        Br J Surg. 1998; 85: 1058-1060
        • Bhattacharya S.
        • Jackson D.J.
        • Beard C.I.
        • et al.
        Central venous pressure and its effects on blood loss during liver resection.
        Br J Surg. 1999; 86: 282-283
        • Chen H.
        • Merchant N.B.
        • Didolkar M.S.
        Hepatic resection using intermittent vascular inflow occlusion and low central venous pressure anesthesia improves morbidity and mortality.
        J Gastrointest Surg. 2000; 4: 162-167
        • Smyrniotis V.
        • Kostopanagiotou G.
        • Theodoraki K.
        • et al.
        The role of central venous pressure and type of vascular control in blood loss during major liver resections.
        Am J Surg. 2004; 187: 398-402
        • Gurusamy K.S.
        • Li J.
        • Vaughan J.
        • et al.
        Cardiopulmonary interventions to decrease blood loss and blood transfusion requirements for liver resection.
        Cochrane Db Syst Rev. 2012; 5: CD007338
        • Soonawalla Z.F.
        • Stratopoulos C.
        • Stoneham M.
        • et al.
        Role of the reverse-Trendelenberg patient position in maintaining low-CVP anaesthesia during liver resections.
        Langenbeck’s Arch Surg. 2008; 393: 195-198
        • SAND L.
        • LUNDIN S.
        • RIZELL M.
        • et al.
        Nitroglycerine and patient position effect on central, hepatic and portal venous pressures during liver surgery.
        Acta Anaesthesiol Scand. 2014; 58: 961-967
        • Man K.
        • Fan S.-T.
        • Ng I.O.L.
        • et al.
        Prospective Evaluation of Pringle Maneuver in Hepatectomy for Liver Tumors by a Randomized Study.
        Ann Surg. 1997; 226: 704-713
        • Kim Y.-I.
        • Chung H.-J.
        • Song K.-E.
        • et al.
        Evaluation of a protease inhibitor in the prevention of ischemia and reperfusion injury in hepatectomy under intermittent Pringle maneuver.
        Am J Surg. 2006; 191: 72-76
        • Clavien P.-A.
        • Yadav S.
        • Sindram D.
        • et al.
        Protective Effects of Ischemic Preconditioning for Liver Resection Performed Under Inflow Occlusion in Humans.
        Ann Surg. 2000; 232: 155-162
        • Lentsch A.B.
        • Kato A.
        • Yoshidome H.
        • et al.
        Inflammatory mechanisms and therapeutic strategies for warm hepatic ischemia/reperfusion injury.
        Hepatology. 2000; 32: 169-173
        • Kim Y.I.
        • Ishii T.
        • Aramaki M.
        • et al.
        The Pringle maneuver induces only partial ischemia of the liver.
        Hepato-gastroenterol. 1995; 42: 169-171
        • Crescenti A.
        • Borghi G.
        • Bignami E.
        • et al.
        Intraoperative use of tranexamic acid to reduce transfusion rate in patients undergoing radical retropubic prostatectomy: double blind, randomised, placebo controlled trial.
        BMJ (Clinical research ed). 2011; 343: d5701
        • Shakur H.
        • Roberts I.
        • Bautista R.
        • et al.
        • collaborators C-2 trial
        Effects of tranexamic acid on death, vascular occlusive events, and blood transfusion in trauma patients with significant haemorrhage (CRASH-2): a randomised, placebo-controlled trial.
        Lancet. 2010; 376: 23-32
        • Ker K.
        • Edwards P.
        • Perel P.
        • et al.
        Effect of tranexamic acid on surgical bleeding: systematic review and cumulative meta-analysis.
        BMJ (Clinical research ed). 2012; 344: e3054
        • Wu C.-C.
        • Ho W.-M.
        • Cheng S.-B.
        • et al.
        Perioperative Parenteral Tranexamic Acid in Liver Tumor Resection.
        Ann Surg. 2006; 243: 173-180
        • Richardson A.J.
        • Laurence J.M.
        • Lam V.W.T.
        Use of pre-operative steroids in liver resection: a systematic review and meta-analysis.
        Hpb. 2014; 16: 12-19
        • Li N.
        • Gu W.
        • Weng J.
        • et al.
        Short-term administration of steroids does not affect postoperative complications following liver resection: Evidence from a meta-analysis of randomized controlled trials.
        Hepatol Res. 2015; 45: 201-209
        • Kemp R.
        • Mole J.
        • Gomez D.
        Group on behalf of the NHS: Current evidence for the use of N-acetylcysteine following liver resection.
        Anz J Surg. 2018; 88: E486-E490
        • Grendar J.
        • Ouellet J.F.
        • McKay A.
        • et al.
        Effect of N-acetylcysteine on liver recovery after resection: A randomized clinical trial.
        J Surg Oncol. 2016; 114: 446-450
      1. Yassen K: Intravenous Infusion of N-acetylcysteine in cirrhotic patients undergoing liver resection attenuates the postoperative increase in liver enzymes, C reactive protein and intercellular adhesion molecule 1. A randomized controlled trial 2020 doi:10.26226/morressier.58f5b030d462b80296c9e6a0

        • Melloul E.
        • Hübner M.
        • Scott M.
        • et al.
        Guidelines for Perioperative Care for Liver Surgery: Enhanced Recovery After Surgery (ERAS) Society Recommendations.
        World J Surg. 2016; 40: 2425-2440
        • Noba L.
        • Rodgers S.
        • Chandler C.
        • et al.
        Enhanced Recovery After Surgery (ERAS) Reduces Hospital Costs and Improve Clinical Outcomes in Liver Surgery: a Systematic Review and Meta-Analysis.
        J Gastrointest Surg. 2020; 24: 918-932