Advertisement

Neuromuscular Blockade Monitoring

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribers receive full online access to your subscription and archive of back issues up to and including 2002.

      Content published before 2002 is available via pay-per-view purchase only.

      Subscribe:

      Subscribe to Anesthesiology Clinics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Griffith H.R.
        • Johnson G.E.
        The use of curare in general anesthesia.
        Anesthesiology. 1942; 3: 418-420
        • Beecher H.K.
        • Todd D.P.
        A study of the deaths associated with anesthesia and surgery: based on a study of 599, 548 anesthesias in ten institutions 1948-1952, inclusive.
        Ann Surg. 1954; 140: 2-35
        • Plaud B.
        • Debaene B.
        • Donati F.
        • et al.
        Residual paralysis after emergence from anesthesia.
        Anesthesiology. 2010; 112: 1013-1022
        • Saager L.
        • Maiese E.M.
        • Bash L.D.
        • et al.
        Incidence, risk factors, and consequences of residual neuromuscular block in the United States: The prospective, observational, multicenter RECITE-US study.
        J Clin Anesth. 2019; 55: 33-41
        • Naguib M.
        • Brull S.J.
        • Kopman A.F.
        • et al.
        Consensus statement on perioperative use of neuromuscular monitoring.
        Anesth Analg. 2018; 127: 71-80
        • Nemes R.
        • Renew J.
        Clinical practice guideline for the management of neuromuscular blockade: what are the recommendations in the USA and other countries?.
        Curr Anesthesiol Rep. 2020; 10: 90-98
        • Kopman A.F.
        • Yee P.S.
        • Neuman G.G.
        Relationship of the train-of-four fade ratio to clinical signs and symptoms of residual paralysis in awake volunteers.
        Anesthesiology. 1997; 86: 765-771
        • Debaene B.
        • Plaud B.
        • Dilly M.P.
        • et al.
        Residual paralysis in the PACU after a single intubating dose of nondepolarizing muscle relaxant with an intermediate duration of action.
        Anesthesiology. 2003; 98: 1042-1048
        • Christie T.H.
        • Churchill-Davidson H.C.
        The St. Thomas's Hospital nerve stimulator in the diagnosis of prolonged apnoea.
        Lancet. 1958; 1: 776
        • Naguib M.
        • Kopman A.F.
        • Lien C.A.
        • et al.
        A survey of current management of neuromuscular block in the United States and Europe.
        Anesth Analg. 2010; 111: 110-119
        • Brull S.J.
        • Silverman D.G.
        Pulse width, stimulus intensity, electrode placement, and polarity during assessment of neuromuscular block.
        Anesthesiology. 1995; 83: 702-709
        • Fuchs-Buder T.
        • Claudius C.
        • Skovgaard L.T.
        • et al.
        Good clinical research practice in pharmacodynamic studies of neuromuscular blocking agents II: the Stockholm revision.
        Acta Anaesthesiol Scand. 2007; 51: 789-808
        • Bhananker S.M.
        • Treggiari M.M.
        • Sellers B.A.
        • et al.
        Comparison of train-of-four count by anesthesia providers versus TOF-Watch® SX: a prospective cohort study.
        Can J Anaesth. 2015; 62: 1089-1096
        • Bowdle A.
        • Bussey L.
        • Michaelsen K.
        • et al.
        Counting train-of-four twitch response: comparison of palpation to mechanomyography, acceleromyography, and electromyography.
        Br J Anaesth. 2020; 124: 712-717
        • Ali H.H.
        • Utting J.E.
        • Gray C.
        Stimulus frequency in the detection of neuromuscular block in humans.
        Br J Anaesth. 1970; 42: 967-978
        • Ali H.H.
        • Wilson R.S.
        • Savarese J.J.
        • et al.
        The effect of tubocurarine on indirectly elicited train-of-four muscle response and respiratory measurements in humans.
        Br J Anaesth. 1975; 47: 570-574
        • Eriksson L.I.
        • Sundman E.
        • Olsson R.
        • et al.
        Functional assessment of the pharynx at rest and during swallowing in partially paralyzed humans: simultaneous videomanometry and mechanomyography of awake human volunteers.
        Anesthesiology. 1997; 87: 1035-1043
        • Eikermann M.
        • Vogt F.M.
        • Herbstreit F.
        • et al.
        The predisposition to inspiratory upper airway collapse during partial neuromuscular blockade.
        Am J Respir Crit Care Med. 2007; 175: 9-15
        • Viby-Mogensen J.
        • Jørgensen B.C.
        • Ording H.
        Residual curarization in the recovery room.
        Anesthesiology. 1979; 50: 539-541
        • Todd M.M.
        • Hindman B.J.
        • King B.J.
        The implementation of quantitative electromyographic neuromuscular monitoring in an academic anesthesia department.
        Anesth Analg. 2014; 119: 323-331
        • Todd M.M.
        • Hindman B.J.
        The implementation of quantitative electromyographic neuromuscular monitoring in an academic anesthesia department: follow-up observations.
        Anesth Analg. 2015; 121: 836-838
        • Carvalho H.
        • Verdonck M.
        • Cools W.
        • et al.
        Forty years of neuromuscular monitoring and postoperative residual curarisation: a meta-analysis and evaluation of confidence in network meta-analysis.
        Br J Anaesth. 2020; 125: 466-482
        • Katz R.L.
        Neuromuscular effects of d-tubocurarine, edrophonium and neostigmine in man.
        Anesthesiology. 1967; 28: 327-336
        • Murphy G.S.
        • Szokol J.W.
        • Avram M.J.
        • et al.
        Neostigmine administration after spontaneous recovery to a train-of-four ratio of 0.9 to 1.0: a randomized controlled trial of the effect on neuromuscular and clinical recovery.
        Anesthesiology. 2018; 128: 27-37
        • Bowdle A.
        • Bussey L.
        • Michaelsen K.
        • et al.
        A comparison of a prototype electromyograph vs. a mechanomyograph and an acceleromyograph for assessment of neuromuscular blockade.
        Anaesthesia. 2020; 75: 187-195
        • Engbaek J.
        Monitoring of neuromuscular transmission by electromyography during anaesthesia. A comparison with mechanomyography in cat and man.
        Dan Med Bull. 1996; 43: 301-316
        • Itagaki T.
        • Tai K.
        • Katsumata N.
        • et al.
        Comparison between a new acceleration transducer and a conventional force transducer in the evaluation of twitch responses.
        Acta Anaesthesiol Scand. 1988; 32: 347-349
        • Werner M.U.
        • Kirkegaard Nielsen H.
        • May O.
        • et al.
        Assessment of neuromuscular transmission by the evoked acceleration response. An evaluation of the accuracy of the acceleration transducer in comparison with a force displacement transducer.
        Acta Anaesthesiol Scand. 1988; 32: 395-400
        • Suzuki T.
        • Fukano N.
        • Kitajima O.
        • et al.
        Normalization of acceleromyographic train-of-four ratio by baseline value for detecting residual neuromuscular block.
        Br J Anaesth. 2006; 96: 44-47
        • Kopman A.F.
        Normalization of the acceleromyographic train-of-four fade ratio.
        Acta Anaesthesiol Scand. 2005; 49: 1575-1576
        • Claudius C.
        • Skovgaard L.T.
        • Viby-Mogensen J.
        Is the performance of acceleromyography improved with preload and normalization? A comparison with mechanomyography.
        Anesthesiology. 2009; 110: 1261-1270
        • Hemmerling T.M.
        • Donati F.
        The M-NMT mechanosensor cannot be considered as a reliable clinical neuromuscular monitor in daily anesthesia practice.
        Anesth Analg. 2002; 95 (author reply 1827): 1826-1827
        • Motamed C.
        • Kirov K.
        • Combes X.
        • et al.
        Comparison between the Datex-Ohmeda M-NMT module and a force-displacement transducer for monitoring neuromuscular blockade.
        Eur J Anaesthesiol. 2003; 20: 467-469
        • Trager G.
        • Michaud G.
        • Deschamps S.
        • et al.
        Comparison of phonomyography, kinemyography and mechanomyography for neuromuscular monitoring.
        Can J Anaesth. 2006; 53: 130-135
        • Stewart P.A.
        • Freelander N.
        • Liang S.
        • et al.
        Comparison of electromyography and kinemyography during recovery from non-depolarising neuromuscular blockade.
        Anaesth Intensive Care. May 2014; 42: 378-384
        • Khandkar C.
        • Liang S.
        • Phillips S.
        • et al.
        Comparison of kinemyography and electromyography during spontaneous recovery from non-depolarising neuromuscular blockade.
        Anaesth Intensive Care. 2016; 44: 745-751
        • Naguib M.
        • Brull S.J.
        • Johnson K.B.
        Conceptual and technical insights into the basis of neuromuscular monitoring.
        Anaesthesia. 2017; 72: 16-37
        • Klein A.A.
        • Meek T.
        • Allcock E.
        • et al.
        Recommendations for standards of monitoring during anaesthesia and recovery 2021: Guideline from the Association of Anaesthetists.
        Anaesthesia. 2021; https://doi.org/10.1111/anae.15501
        • Dobson G.
        • Chow L.
        • Filteau L.
        • et al.
        Guidelines to the practice of anesthesia - revised edition 2021.
        Can J Anaesth. 2021; 68: 92-129
        • Plaud B.
        • Baillard C.
        • Bourgain J.L.
        • et al.
        Guidelines on muscle relaxants and reversal in anaesthesia.
        Anaesth Crit Care Pain Med. 2020; 39: 125-142
        • Australian and New Zealand College of Anaesthetists
        PS18 Guideline on monitoring during anaesthesia.
        2017 (Available at: https://www.anzca.edu.au/getattachment/0c2d9717-fa82-4507-a3d6-3533d8fa844d/PS18-Guideline-on-monitoring-during-anaesthesia. Accessed July 13, 2021.)
        • Renew J.R.
        • Hex K.
        • Johnson P.
        • et al.
        Ease of application of various neuromuscular devices for routine monitoring.
        Anesth Analg. 2020; https://doi.org/10.1213/ANE.0000000000005213
        • Nemes R.
        • Nagy G.
        • Murphy G.S.
        • et al.
        Awake volunteer pain scores during neuromuscular monitoring.
        Anesth Analg. 2020; 130: 941-948
        • Dubois P.E.
        • De Bel M.
        • Jamart J.
        • et al.
        Performance of acceleromyography with a short and light TOF-tube compared with mechanomyography: a clinical comparison.
        Eur J Anaesthesiol. 2014; 31: 404-410
        • Söderström C.M.
        • Eskildsen K.Z.
        • Gätke M.R.
        • et al.
        Objective neuromuscular monitoring of neuromuscular blockade in Denmark: an online-based survey of current practice.
        Acta Anaesthesiol Scand. 2017; 61: 619-626
        • Thilen S.R.
        • Hansen B.E.
        • Ramaiah R.
        • et al.
        Intraoperative neuromuscular monitoring site and residual paralysis.
        Anesthesiology. 2012; 117: 964-972
        • Stiffel P.
        • Hameroff S.R.
        • Blitt C.D.
        • et al.
        Variability in assessment of neuromuscular blockade.
        Anesthesiology. 1980; 52: 436-437
        • Caffrey R.R.
        • Warren M.L.
        • Becker K.E.
        Neuromuscular blockade monitoring comparing the orbicularis oculi and adductor pollicis muscles.
        Anesthesiology. 1986; 65: 95-97
        • Donati F.
        • Meistelman C.
        • Plaud B.
        Vecuronium neuromuscular blockade at the diaphragm, orbicularis oculi and adductor pollicis muscles.
        Can J Anaesth. 1990; 37: S13
        • Sayson S.C.
        • Mongan P.D.
        Onset of action of mivacurium chloride. a comparison of neuromuscular blockade monitoring at the adductor pollicis and the orbicularis oculi.
        Anesthesiology. 1994; 81: 35-42
        • Debaene B.
        • Meistelman C.
        • Beaussier M.
        • et al.
        Visual estimation of train-of-four responses at the orbicularis oculi and posttetanic count at the adductor pollicis during intense neuromuscular block.
        Anesth Analg. 1994; 78: 697-700
        • Rimaniol J.M.
        • Dhonneur G.
        • Sperry L.
        • et al.
        A comparison of the neuromuscular blocking effects of atracurium, mivacurium, and vecuronium on the adductor pollicis and the orbicularis oculi muscle in humans.
        Anesth Analg. 1996; 83: 808-813
        • Abdulatif M.
        • el-Sanabary M.
        Blood flow and mivacurium-induced neuromuscular block at the orbicularis oculi and adductor pollicis muscles.
        Br J Anaesth. 1997; 79: 24-28
        • Larsen P.B.
        • Gätke M.R.
        • Fredensborg B.B.
        • et al.
        Acceleromyography of the orbicularis oculi muscle II: comparing the orbicularis oculi and adductor pollicis muscles.
        Acta Anaesthesiol Scand. 2002; 46: 1131-1136
        • Hattori H.
        • Saitoh Y.
        • Nakajima H.
        • et al.
        Visual evaluation of fade in response to facial nerve stimulation at the eyelid.
        J Clin Anesth. 2005; 17: 276-280
        • Donati F.
        Neuromuscular monitoring: useless, optional or mandatory?.
        Can J Anaesth. 1998; 45: R106-R116
        • Donati F.
        Neuromuscular monitoring: more than meets the eye.
        Anesthesiology. 2012; 117: 934-936
        • Yamamoto S.
        • Yamamoto Y.
        • Kitajima O.
        • et al.
        Reversal of neuromuscular block with sugammadex: a comparison of the corrugator supercilii and adductor pollicis muscles in a randomized dose-response study.
        Acta Anaesthesiol Scand. 2015; 59: 892-901
        • Kitajima T.
        • Ishii K.
        • Kobayashi T.
        • et al.
        Differential effects of vecuronium on the thumb and the big toe muscles evaluated by acceleration measurement.
        J Anesth. 1994; 8: 143-145
        • Kern S.E.
        • Johnson J.O.
        • Orr J.A.
        • et al.
        Clinical analysis of the flexor hallucis brevis as an alternative site for monitoring neuromuscular block from mivacurium.
        J Clin Anesth. 1997; 9: 383-387
        • Saitoh Y.
        • Koitabashi Y.
        • Makita K.
        • et al.
        Train-of-four and double burst stimulation fade at the great toe and thumb.
        Can J Anaesth. 1997; 44: 390-395
        • Heier T.
        • Hetland S.
        A comparison of train-of-four monitoring: mechanomyography at the thumb vs acceleromyography at the big toe.
        Acta Anaesthesiol Scand. 1999; 43: 550-555
        • Graham D.H.
        Monitoring neuromuscular block may be unreliable in patients with upper-motor-neuron lesions.
        Anesthesiology. 1980; 52: 74-75
        • Moorthy S.S.
        • Hilgenberg J.C.
        Resistance to non-depolarizing muscle relaxants in paretic upper extremities of patients with residual hemiplegia.
        Anesth Analg. 1980; 59: 624-627
        • Iwasaki H.
        • Namiki A.
        • Omote K.
        • et al.
        Response differences of paretic and healthy extremities to pancuronium and neostigmine in hemiplegic patients.
        Anesth Analg. 1985; 64: 864-866