Advertisement

Respiratory Mechanics

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribers receive full online access to your subscription and archive of back issues up to and including 2002.

      Content published before 2002 is available via pay-per-view purchase only.

      Subscribe:

      Subscribe to Anesthesiology Clinics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Slutsky A.S.
        • Ranieri V.M.
        Ventilator-induced lung injury.
        N Engl J Med. 2013; 369: 2126-2136
        • Tonetti T.
        • Vasques F.
        • Rapetti F.
        • et al.
        Driving pressure and mechanical power: new targets for VILI prevention.
        Ann Transl Med. 2017; 5: 286
        • Gattinoni L.
        • Tonetti T.
        • Cressoni M.
        • et al.
        Ventilator-related causes of lung injury: the mechanical power.
        Intensive Care Med. 2016; 42: 1567-1575
        • Cressoni M.
        • Gotti M.
        • Chiurazzi C.
        • et al.
        Mechanical power and development of ventilator-induced lung injury.
        Anesthesiology. 2016; 124: 1100-1108
        • Collino F.
        • Rapetti F.
        • Vasques F.
        • et al.
        Positive end-expiratory pressure and mechanical power.
        Anesthesiology. 2019; 130: 119-130
        • Zhang Z.
        • Zheng B.
        • Liu N.
        • et al.
        Mechanical power normalized to predicted body weight as a predictor of mortality in patients with acute respiratory distress syndrome.
        Intensive Care Med. 2019; 45: 856-864
        • Hol L.
        • Nijbroek S.
        • Schultz M.J.
        Perioperative lung protection: clinical implications.
        Anesth Analg. 2020; 131: 1721-1729
        • Chiumello D.
        • Carlesso E.
        • Cadringher P.
        • et al.
        Lung stress and strain during mechanical ventilation for acute respiratory distress syndrome.
        Am J Respir Crit Care Med. 2008; 178: 346-355
        • Grasso S.
        • Stripoli T.
        • De Michele M.
        • et al.
        ARDSnet ventilatory protocol and alveolar hyperinflation: role of positive end-expiratory pressure.
        Am J Respir Crit Care Med. 2007; 176: 761-767
        • Terragni P.P.
        • Rosboch G.
        • Tealdi A.
        • et al.
        Tidal hyperinflation during low tidal volume ventilation in acute respiratory distress syndrome.
        Am J Respir Crit Care Med. 2007; 175: 160-166
        • Benditt J.O.
        Esophageal and gastric pressure measurements.
        Respir Care Jan. 2005; 50 ([discussion 75-7]): 68-75
        • Carvalho A.R.
        • Spieth P.M.
        • Pelosi P.
        • et al.
        Ability of dynamic airway pressure curve profile and elastance for positive end-expiratory pressure titration.
        Intensive Care Med. 2008; 34: 2291-2299
        • Al-Rawas N.
        • Banner M.J.
        • Euliano N.R.
        • et al.
        Expiratory time constant for determinations of plateau pressure, respiratory system compliance, and total resistance.
        Crit Care. 2013; 17: R23
        • Marini J.J.
        Dynamic hyperinflation and auto-positive end-expiratory pressure: lessons learned over 30 years.
        Am J Respir Crit Care Med. 2011; 184: 756-762
        • Blanch L.
        • Bernabe F.
        • Lucangelo U.
        Measurement of air trapping, intrinsic positive end-expiratory pressure, and dynamic hyperinflation in mechanically ventilated patients.
        Respir Care. 2005; 50 ([discussion 123-4]): 110-123
        • Amato M.B.
        • Meade M.O.
        • Slutsky A.S.
        • et al.
        Driving pressure and survival in the acute respiratory distress syndrome.
        N Engl J Med. 2015; 372: 747-755
        • Bellani G.
        • Laffey J.G.
        • Pham T.
        • et al.
        The LUNG SAFE study: a presentation of the prevalence of ARDS according to the Berlin Definition!.
        Crit Care. 2016; 20: 268
        • Giannella-Neto A.
        • Bellido C.
        • Barbosa R.B.
        • et al.
        Design and calibration of unicapillary pneumotachographs.
        J Appl Physiol (1985). 1998; 84: 335-343
        • Ninane V.
        • Leduc D.
        • Kafi S.A.
        • et al.
        Detection of expiratory flow limitation by manual compression of the abdominal wall.
        Am J Respir Crit Care Med. 2001; 163: 1326-1330
        • Fernandez-Bustamante A.
        • Vidal Melo M.F.
        Bedside assessment of lung aeration and stretch.
        Br J Anaesth. 2018; 121: 1001-1004
        • Ranieri V.M.
        • Giuliani R.
        • Mascia L.
        • et al.
        Chest wall and lung contribution to the elastic properties of the respiratory system in patients with chronic obstructive pulmonary disease.
        Eur Respir J. 1996; 9: 1232-1239
        • Faffe D.S.
        • Zin W.A.
        Lung parenchymal mechanics in health and disease.
        Physiol Rev. 2009; 89: 759-775
        • Rossi A.
        • Gottfried S.B.
        • Higgs B.D.
        • et al.
        Respiratory mechanics in mechanically ventilated patients with respiratory failure.
        J Appl Physiol (1985). 1985; 58: 1849-1858
        • Hess D.
        • Tabor T.
        Comparison of six methods to calculate airway resistance during mechanical ventilation in adults.
        J Clin Monit. 1993; 9: 275-282
        • Smith T.C.
        • Marini J.J.
        Impact of PEEP on lung mechanics and work of breathing in severe airflow obstruction.
        J Appl Physiol (1985). 1988; 65: 1488-1499
        • Ranieri V.M.
        • Grasso S.
        • Fiore T.
        • et al.
        Auto-positive end-expiratory pressure and dynamic hyperinflation.
        Clin Chest Med. 1996; 17: 379-394
        • Maisch S.
        • Reissmann H.
        • Fuellekrug B.
        • et al.
        Compliance and dead space fraction indicate an optimal level of positive end-expiratory pressure after recruitment in anesthetized patients.
        Anesth Analg. 2008; 106 (table of contents): 175-181
        • Gattinoni L.
        • Vagginelli F.
        • Chiumello D.
        • et al.
        Physiologic rationale for ventilator setting in acute lung injury/acute respiratory distress syndrome patients.
        Crit Care Med. 2003; 31: S300-S304
        • Gattinoni L.
        • Chiumello D.
        • Carlesso E.
        • et al.
        Bench-to-bedside review: chest wall elastance in acute lung injury/acute respiratory distress syndrome patients.
        Crit Care. 2004; 8: 350-355
        • Sarge T.
        • Talmor D.
        Targeting transpulmonary pressure to prevent ventilator induced lung injury.
        Minerva Anestesiol. 2009; 75: 293-299
        • Dhand R.
        Ventilator graphics and respiratory mechanics in the patient with obstructive lung disease.
        Respir Care Feb. 2005; 50 ([discussion 259-61]): 246-261
        • Jubran A.
        • Tobin M.J.
        Use of flow-volume curves in detecting secretions in ventilator-dependent patients.
        Am J Respir Crit Care Med. 1994; 150: 766-769
        • Suter P.M.
        • Fairley B.
        • Isenberg M.D.
        Optimum end-expiratory airway pressure in patients with acute pulmonary failure.
        N Engl J Med. 1975; 292: 284-289
        • Petit J.M.
        • Milic-Emili G.
        Measurement of endoesophageal pressure.
        J Appl Physiol. 1958; 13: 481-485
        • Walterspacher S.
        • Isaak L.
        • Guttmann J.
        • et al.
        Assessing respiratory function depends on mechanical characteristics of balloon catheters.
        Respir Care. 2014; 59: 1345-1352
        • Talmor D.
        • Sarge T.
        • Malhotra A.
        • et al.
        Mechanical ventilation guided by esophageal pressure in acute lung injury.
        N Engl J Med. 2008; 359: 2095-2104
        • Talmor D.
        • Sarge T.
        • O'Donnell C.R.
        • et al.
        Esophageal and transpulmonary pressures in acute respiratory failure.
        Crit Care Med. 2006; 34: 1389-1394
        • Terragni P.
        • Mascia L.
        • Fanelli V.
        • et al.
        Accuracy of esophageal pressure to assess transpulmonary pressure during mechanical ventilation.
        Intensive Care Med. 2017; 43: 142-143
        • Brochard L.
        • Slutsky A.
        • Pesenti A.
        Mechanical ventilation to minimize progression of lung injury in acute respiratory failure.
        Am J Respir Crit Care Med. 2017; 195: 438-442
        • Beitler J.R.
        • Sarge T.
        • Banner-Goodspeed V.M.
        • et al.
        Effect of Titrating Positive End-Expiratory Pressure (PEEP) with an esophageal pressure-guided strategy vs an empirical high PEEP-Fio2 strategy on death and days free from mechanical ventilation among patients with acute respiratory distress syndrome: a randomized clinical trial.
        JAMA. 2019; 321: 846-857
        • Loring S.H.
        • O'Donnell C.R.
        • Behazin N.
        • et al.
        Esophageal pressures in acute lung injury: do they represent artifact or useful information about transpulmonary pressure, chest wall mechanics, and lung stress?.
        J Appl Physiol (1985). 2010; 108: 515-522
        • Olegard C.
        • Sondergaard S.
        • Houltz E.
        • et al.
        Estimation of functional residual capacity at the bedside using standard monitoring equipment: a modified nitrogen washout/washin technique requiring a small change of the inspired oxygen fraction.
        Anesth Analg Jul. 2005; 101 (table of contents): 206-212
        • Chiumello D.
        • Cressoni M.
        • Chierichetti M.
        • et al.
        Nitrogen washout/washin, helium dilution and computed tomography in the assessment of end expiratory lung volume.
        Crit Care. 2008; 12: R150
        • Dellamonica J.
        • Lerolle N.
        • Sargentini C.
        • et al.
        PEEP-induced changes in lung volume in acute respiratory distress syndrome. Two methods to estimate alveolar recruitment.
        Intensive Care Med. 2011; 37: 1595-1604
        • Blankman P.
        • Hasan D.
        • van Mourik M.S.
        • et al.
        Ventilation distribution measured with EIT at varying levels of pressure support and Neurally Adjusted Ventilatory Assist in patients with ALI.
        Intensive Care Med. 2013; 39: 1057-1062
        • Dargaville P.A.
        • Rimensberger P.C.
        • Frerichs I.
        Regional tidal ventilation and compliance during a stepwise vital capacity manoeuvre.
        Intensive Care Med. 2010; 36: 1953-1961
        • Yoshida T.
        • Piraino T.
        • Lima C.A.S.
        • et al.
        Regional ventilation displayed by electrical impedance tomography as an incentive to decrease positive end-expiratory pressure.
        Am J Respir Crit Care Med. 2019; 200: 933-937
        • Hinz J.
        • Hahn G.
        • Neumann P.
        • et al.
        End-expiratory lung impedance change enables bedside monitoring of end-expiratory lung volume change.
        Intensive Care Med. 2003; 29: 37-43
        • Meier T.
        • Luepschen H.
        • Karsten J.
        • et al.
        Assessment of regional lung recruitment and derecruitment during a PEEP trial based on electrical impedance tomography.
        Intensive Care Med. 2008; 34: 543-550
        • Spadaro S.
        • Mauri T.
        • Bohm S.H.
        • et al.
        Variation of poorly ventilated lung units (silent spaces) measured by electrical impedance tomography to dynamically assess recruitment.
        Crit Care. 2018; 22: 26
        • Zhao Z.
        • Chang M.Y.
        • Chang M.Y.
        • et al.
        Positive end-expiratory pressure titration with electrical impedance tomography and pressure-volume curve in severe acute respiratory distress syndrome.
        Ann Intensive Care. 2019; 9: 7
        • Malbrain M.L.
        • Deeren D.
        • De Potter T.J.
        Intra-abdominal hypertension in the critically ill: it is time to pay attention.
        Curr Opin Crit Care. 2005; 11: 156-171
        • Malbrain M.L.
        Different techniques to measure intra-abdominal pressure (IAP): time for a critical re-appraisal.
        Intensive Care Med. 2004; 30: 357-371
        • Cheatham M.L.
        • De Waele J.J.
        • De Laet I.
        • et al.
        The impact of body position on intra-abdominal pressure measurement: a multicenter analysis.
        Crit Care Med. 2009; 37: 2187-2190
        • Tobin M.J.
        • Lodato R.F.
        PEEP, auto-PEEP, and waterfalls.
        Chest. 1989; 96: 449-451
        • Koutsoukou A.
        • Pecchiari M.
        Expiratory flow-limitation in mechanically ventilated patients: a risk for ventilator-induced lung injury?.
        World J Crit Care Med. 2019; 8: 1-8
        • Fernandez R.
        • Benito S.
        • Blanch L.
        • et al.
        Intrinsic PEEP: a cause of inspiratory muscle ineffectivity.
        Intensive Care Med. 1988; 15: 51-52
        • Nava S.
        • Bruschi C.
        • Fracchia C.
        • et al.
        Patient-ventilator interaction and inspiratory effort during pressure support ventilation in patients with different pathologies.
        Eur Respir J. 1997; 10: 177-183
        • Young I.H.
        • Bye P.T.
        Gas exchange in disease: asthma, chronic obstructive pulmonary disease, cystic fibrosis, and interstitial lung disease.
        Compr Physiol. 2011; 1: 663-697
        • MacDonald M.I.
        • Shafuddin E.
        • King P.T.
        • et al.
        Cardiac dysfunction during exacerbations of chronic obstructive pulmonary disease.
        Lancet Respir Med. 2016; 4: 138-148
        • Rossi A.
        • Polese G.
        • Brandi G.
        • et al.
        Intrinsic positive end-expiratory pressure (PEEPi).
        Intensive Care Med. 1995; 21: 522-536
        • Patroniti N.
        • Bellani G.
        • Cortinovis B.
        • et al.
        Role of absolute lung volume to assess alveolar recruitment in acute respiratory distress syndrome patients.
        Crit Care Med. 2010; 38: 1300-1307
        • Perchiazzi G.
        • Rylander C.
        • Derosa S.
        • et al.
        Regional distribution of lung compliance by image analysis of computed tomograms.
        Respir Physiol Neurobiol. 2014; 201: 60-70
        • Loring S.H.
        • Topulos G.P.
        • Hubmayr R.D.
        Transpulmonary pressure: the importance of precise definitions and limiting assumptions.
        Am J Respir Crit Care Med. 2016; 194: 1452-1457
        • Gattinoni L.
        • Pelosi P.
        • Suter P.M.
        • et al.
        Acute respiratory distress syndrome caused by pulmonary and extrapulmonary disease. Different syndromes?.
        Am J Respir Crit Care Med. 1998; 158: 3-11